欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1151-1158.doi: 10.3724/SP.J.1006.2011.01151

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆幼苗根系性状的QTL分析

周蓉,陈海峰,王贤智,伍宝朵,陈水莲,张晓娟,吴学军,杨中路,邱德珍,江木兰,周新安*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学重点开放实验室,湖北武汉430062
  • 收稿日期:2010-12-28 修回日期:2011-03-27 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 周新安, E-mail: xazhou@public.wh.hb.cn, Tel: 027-86711563
  • 基金资助:

    本研究由国家自然科学基金项目(30871554, 30900906), 国家高技术研究发展计划(863计划)项目(2006AA1000104), 国家“十一五”科技支撑计划项目(2006BAD01A04-3)和国家转基因生物新品种培育重大专项(2008ZX08004-005, 2009ZX08009-133B, 2009ZX08009-120B)资助。

QTL Analysis of Root Traits of Soybean at Seedling Stage

ZHOU Rong,CHEN Hai-Feng,WANG Xian-Zhi,WU Bao-Duo,CHEN Shui-Lian,ZHANG Xiao-Juan,WU Xue-Jun,YANG Zhong-Lu,QIU De-Zhen,JIANG Mu-Lan,ZHOU Xin-An*   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Oil Crops Biology of the Ministry of Agriculture, Wuhan 430062, China
  • Received:2010-12-28 Revised:2011-03-27 Published:2011-07-12 Published online:2011-05-11
  • Contact: 周新安, E-mail: xazhou@public.wh.hb.cn, Tel: 027-86711563

摘要: 为研究大豆幼苗期根系性状的遗传规律,以中豆29和中豆32构建的RIL群体为材料,在V2期测定水培幼苗根系性状(主根长、侧根数、根重、根体积和根冠比等)及相关性状(株重、茎叶重和下胚轴重等),以方差分析方法估算遗传参数,并采用复合区间作图法对大豆幼苗期根系等性状进行QTL定位。结果表明,在8个染色体上检测到20个根系及相关性状QTL,其中9个主效QTL位于第11和第14染色体,表型贡献率在10.5%~26.1%之间。在第11和第14染色体上,部分根系性状QTL与地上部性状QTL处于同一位置,其QTL的共位性与形态性状表型相关分析结果一致,反映了根系性状与地上部性状存在一定的关联。

关键词: 大豆, 根系性状, 幼苗期, QTL定位

Abstract: Root system plays important roles in plant growth and development, including uptaking water and nutrient, resisting biotic and abiotic stresses, and finally influencing yield and quality. A number of QTLs for shoot traits have been detected using different populations in soybean [Glycine max (L.) Merr], but rarely for root trait. The aim of the present study was to identify QTLs for some root traits at seedling stage in soybean. A total of 165 recombinant inbred lines (RILs) derived from the cross between Zhongdou 29 and Zhongdou 32 were used. Soybean seedlings were hydroponically cultured,root traits including main root length, number of lateral roots, root weight, root volume, and aerial part traits such as plant weight, shoot weight per plant, and ratio of root weight to shoot weight were measured at the stage of V2 (first trifoliolate leaf fully expanded). By composite interval mapping (CIM) method, twenty QTLs for roots and aerial part traits were mapped on eight chromosomes, including nine major-effect QTLs on chromosome 11 and 14 with 10.5–26.1% of the phenotypic variation. On chromosome 11 and 14, some QTLs for root traits and aerial part traits were clustered, which was consistent with the correlation analysis of phenotypic traits, indicating that the root traits are associated with the shoot traits.

Key words: Soybean, Root traits, Seedling stage, QTL mapping

[1]Keller M, Karutz Ch, Schmid J E, Stamp P, Winzeler M, Keller B, Messmer M M. Quantitative trait loci for lodging resistance in a segregating wheat×spelt population. Theor Appl Genet, 1999, 98: 1171–1182
[2]Menchey E K, Aycock Jr M K. Anther-derived dihaploids for lodging improvement in tobacco. Crop Sci, 1998, 38: 698–701
[3]Tar’an B, Warkentin T, Somers D J, Miranda D, Vandenberg A, Blade S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G. Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet, 2003, 107: 1482–1491
[4]Inoue M, Gao Z S, Cai H W. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet, 2004, 109:1576–1585
[5]Zhou R(周蓉), Wang X-Z(王贤智), Chen H-F(陈海峰), Zhang X-J(张晓娟), Shan Z-H(单志慧), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安), Wu J-S(吴江生). QTL analysis of lodging and related traits in soybean. Acta Agron Sin (作物学报), 2009, 35(1): 57–65 (in Chinese with English abstract)
[6]Liu Y(刘莹), Gai J-Y(盖钧镒), Lü H-N(吕慧能), Wang Y-J(王永军), Chen S-Y(陈受宜). Identification of drought tolerance germplasm and inheritance and QTL Mapping of related root traits in soybean
[Glycine max (L) Merr.]. Acta Genet Sin (遗传学报), 2005, 32(8): 855–863 (in Chinese with English abstract)
[7]Caradus J R. Genetic control of phosphorus uptake and phosphorus status in plants. In: Genetic Manipulation of Crop Plants to Enhance Integrated Nutrient Management in Cropping System. Patancheru, India: ICRISAT Asia Centre, 1995. pp 55–74
[8]Pantalone V R, Buton J W, Carter T E Jr. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits. Crop Sci, 1996, 36: 1120–1125
[9]Tian P-Z(田佩占). Ecotypes of root system in soybean cultivars. Acta Agron Sin (作物学报), 1984, 10(3): 173–178 (in Chinese with English abstract)
[10]Liu Y(刘莹), Gai J-Y(盖钧镒), Lü H-N(吕慧能). Identification of rhizosphere abiotic stress tolerance and related root traits in soybean
[Glycine max (L) Merr.]. Acta Agron Sin (作物学报), 2005, 31(9): 1132–1137 (in Chinese with English abstract)
[11]Hudak C M, Patterson R P. Vegetative growth analysis of a drought-resistant soybean plant introduction. Crop Sci, 1995, 35: 464–471
[12]Hudak C M, Patterson R P. Root distribution and soil moisture depletion pattern of a drought-resistant soybean plant introduction. Agron J, 1996, 88: 478–485
[13]Pantalone V R, Rebetzke G J, Burton J W, Carter T E Jr. Phenotypic evaluation of root traits in soybean and applicability to plant breeding. Crop Sci, 1996, 36: 456–459
[14]Sloane R J, Patterson R P, Carter T E Jr. Field drought tolerance of a soybean plant introduction. Crop Sci, 1990, 30: 118–123
[15]Hoogenboom G M, Huck C M, Peterson R P. Root growth rate of soybean as affected by drought stress. Agron J, 1987, 79: 607–614
[16]King C A, Purcell L C, Brye K R. Differential wilting among soybean genotypes in response to water deficit. Crop Sci, 2009, 49: 290–291
[17]Sinclair T R, Zwieniecki M A, Holbrook N M. Low leaf hydraulic conductance associated with drought tolerance in soybean. Physiol Plant, 2008, 132: 446–451
[18]Manavalan L P, Guttikonda S K, Tran L S P, Nguyen H T. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol, 2009, 50: 1260–1276
[19]Liang Q(梁泉), Yin Y-P(尹元萍), Yan X-L(严小龙), Liao H(廖红). Genetic analysis of root characters in soybean using a recombinant inbred line population at two phosphorus levels. Mol Plant Breed (分子植物育种), 2009, 7(2): 321–329 (in Chinese with English abstract)
[20]Zhang Y L, Jia J H, Zhao Y Q, Gu S Y, XU J G. Screening index for low phosphorus tolerance at seedling stage. Agric Sci Technol, 2010, 11 :87–89
[21]Wang H-L(王宏林), Yu D-Y(喻德跃), Wang Y-J(王永军), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Mapping QTLs of soybean root weight with RIL population NJRIKY. Hereditas (遗传), 2004, 26(3): 333–336 (in Chinese with English abstract)
[22]Cui S-Y(崔世友), Geng L-Y(耿雷跃), Meng Q-C(孟庆长), Yu D-Y(喻德跃). QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.) during seedling stage. Acta Agron Sin (作物学报), 2007, 33(3): 378–383 (in Chinese with English abstract)
[23]Liu Y(刘莹), Zhang M-C(张孟臣). Study on root trait related yield in soybean growing in summer and QTL mapping. J Hebei Univ Eng (Nat Sci Edn)(河北工程大学学报•自然科学版), 2010, 27(1): 65–69 (in Chinese with English abstract)
[24]Sun G-Y(孙广玉), He Y(何庸), Zhang R-H(张荣华), Zhang D-P(张代平). Studies on growth and activities of soybean root. Soybean Sci (大豆科学), 1996, 15(4): 317–321 (in Chinese with English abstract)
[25]Zhou R(周蓉), Chen H-F(陈海峰), Wang X-Z(王贤智), Zhang X-J(张晓娟), Shan Z-H(单志慧), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安), Wu J-S(吴江生). QTL analysis of yield, yield components, and lodging in soybean. Acta Agron Sin (作物学报), 2009, 35(5): 821–830 (in Chinese with English abstract)
[26]Zhou R(周蓉), Chen H-F(陈海峰), Wang X-Z(王贤智), Zhang X-J(张晓娟), Shan Z-H(单志慧), Wu X-J(吴学军), Qiu D-Z(邱德珍), Wu B-D(武宝朵), Sha A-H(沙爱华), Yang Z-L(杨中路), Zhou X-A(周新安). Dynamic analysis of QTL for plant height and stem diameter at different developmental stages in soybean. J Plant Genet Resour (植物遗传资源学报), 2010, 11(3): 349–359 (in Chinese with English abstract)
[27]Gai J-Y(盖钧镒). Experimentation Methods(试验统计方法), 3rd edn. Beijing: China Agriculture Press, 2000. pp 248–252 (in Chinese)
[28]Ma Y-H(马育华). Foundation of Statistical Genetics and Plant Breeding (植物育种的数量遗传学基础). Jiangsu: Jiangsu Sci & Tech Press, 1984. pp 442–445 (in Chinese)
[29]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 User Manual. Department of Statistics, North Carolina State University, Raleigh, NC, 2005 (http://statgen.ncsu.edu/qtlcart/ WQTLCart.htm)
[30]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report o QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13
[31]Ray J D, Yu L X, Mccouch S R, Mackill D J, Toole T C O, Huang N, MeCouch S R. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627–636
[32]Fang P(方萍), Wu P(吴平), Tao Q-N(陶勤南). QTLs for rice root morphological characters. Acta Agron Sin (作物学报), 1999, 25(2): 181–185 (in Chinese with English abstract)
[33]Li Z-K(李卓坤), Peng T(彭涛), Zhang W-D(张卫东), Xie Q-G(谢全刚), Tian J-C(田纪春). Analysis of QTLs for root trait at seedling stage using an “immortalized F2” population of wheat. Acta Agron Sin (作物学报), 2010, 36(3): 442–448 (in Chinese with English abstract)
[34]Lü C-X(吕彩霞), Guo J-Q(郭建秋), Wang Y(王英), Leng J-T(冷建田), Yang G-M(杨光明), Hou W-S(侯文胜), Wu C-X(吴存祥), Han T-F(韩天富). Identification, inheritance analysis, and QTL mapping of root and shoot traits in soybean variety PI471938 with tolerance to wilting. Acta Agron Sin (作物学报), 2010, 36(9): 1476–1483 (in Chinese with English abstract)
[35]Yang X-H(杨秀红), Wu Z-P(吴宗璞), Zhang G-D(张国栋). Study on soybean root system. J Northeast Agric Univ (东北农业大学学报), 2002, 33(2): 203–208 (in Chinese with English abstract)
[36]Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and Quality. Theor Appl Genet, 2001, 103: 702–709
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!