欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 101-109.doi: 10.3724/SP.J.1006.2013.00101

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻高产氮高效型品种的物质积累与转运特性

李敏1,2,张洪程2,*,杨雄2,葛梦婕2,马群2,魏海燕2,戴其根2,霍中洋2,许轲2   

  1. 贵州省水稻研究所,贵州贵阳550006;2 扬州大学农业部长江流域稻作技术创新中心,江苏扬州225009
  • 收稿日期:2012-06-11 修回日期:2012-10-09 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 张洪程, E-mail: hczhang@yzu.edu.cn, Tel: 0514-87979220
  • 基金资助:

    本研究由国家自然科学基金项目(30971732, 31101102), 国家粮食丰产科技工程项目(2011BAD16B03), 贵州省科技计划项目(黔科合NY字[2012]3043), 贵州省水稻育种、栽培与产业化创新能力建设项目(黔科合 院所创能 合[2011]4003), 贵州山区水稻科研基础条件建设项目(黔科条中补地[2011]4005), 贵州科技重大专项计划项目(黔科合重大专项字[2011]6012-2)及贵州省科技成果重点推广计划项目(黔科合成字[2012]5019)资助。

Characteristics of Dry Matter Accumulation and Translocation in Rice Cultivars with High Yield and High Nitrogen Use Efficiency

LI Min1,2,ZHANG Hong-Cheng2,*,YANG Xiong2,GE Meng-Jie2,MA Qun2,WEI Hai-Yan2,DAI Qi-Gen2,HUO Zhong-Yang2,XU Ke2   

  1. 1 Rice Research Institute of Guizhou Province, Guiyang 550006, China; 2 Innovation Center of Rice Technology in Yangtze Rice Valley, Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China
  • Received:2012-06-11 Revised:2012-10-09 Published:2013-01-12 Published online:2012-11-14
  • Contact: 张洪程, E-mail: hczhang@yzu.edu.cn, Tel: 0514-87979220

摘要:

选用低产氮低效型、高产氮中效型和高产氮高效型具有代表性的6个粳稻品种,在各自最适氮素水平下,研究了干物质积累与转运特性的差异及其与氮效率的关系。结果表明,较之低产类型品种,高产类型品种物质生产总量提高20.29%,差异达显著水平。其中在够苗前、拔节至抽穗、抽穗至成熟阶段的干物质积累量和群体生长率分别提高15.05%27.04%24.75%15.05%28.38%23.00%,够苗至拔节阶段则互有高低。同为高产类型品种,因氮利用率的差异物质积累与转运特性不同。较之高产氮中效型,高产氮高效型品种各生育时期的单位面积茎蘖数均呈下降趋势,其中够苗、拔节、抽穗和成熟期平均分别降低5.76%11.61%7.01%5.70%,差异均达显著水平,而成穗率显著提高。各生育时期的干物质积累量均有所下降,其中,够苗、拔节、抽穗和成熟期分别降低12.18%10.54%8.29%5.01%,收获指数却显著提高。抽穗至成熟阶段的干物质积累率提高5.40%,群体生长率提高5.19%。说明抽穗前适当控制群体生长,抽穗后保持较高的群体生长水平及较高的收获指数是高产氮高效型品种的重要物质生产特性。

关键词: 水稻, 高产高效, 物质生产, 物质转运

Abstract:

The difference of dry matter production and translocation characteristics in low-yielding and low N-efficiency, high-yielding and medium N-efficiency, high-yielding and high N-efficiency rice cultivars was investigated using six representative japonica varieties under their optimum N supply levels, respectively. The results indicated that: with the increase of rice productivity, the total dry matter production amount significantly increased by 20.29% on average, and the dry matter accumulation amount and population growth rate increased on average by 15.05%, 27.04%, 24.75% and 15.05%, 28.38%, 23.00%, during the period before N-n (critical stage of productive tillering),from jointing to heading, and from heading to maturing, respectively, and decreased during the period from N-n to the jointing. Among the high-yielding varieties, with the nitrogen use efficiency increased, the tiller number per unit area at each growth stage showed a downward trend, and significantly reduced on average by 5.76%, 11.61%, 7.01%, and 5.70% at N-n, jointing, heading and maturing, respectively, but ratio of productive tillers to total tillers significantly increased. At each growth stage, the dry matter accumulation amount showed a declined tendency, and reduced on average by 12.18%, 10.54%, 8.29%, and 5.01% at N-n, jointing, heading and maturity, respectively, but harvest index significantly increased. During the period from heading to maturing, dry matter accumulation rate increased on average by 5.40%, the population growth rate increased on average by 5.19%. The results above showed that proper control for population growth before heading, maintaining a high growth rate after heading and a higher harvest index were the important dry matter accumulation characteristics of the cultivars with high-yielding and high nitrogen use efficiency.

Key words: Rice, High-yielding and high N-efficiency, Dry matter production, Dry matter translocation

[1]FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, 2004. http://www.fao.org/



[2]Li H(李华), Xu C-Q(徐长青), Li S-F(李世峰), Qian Z-H(钱宗华). Effects of different nitrogen management on yield and nitrogen utilization of machine-transplanted rice. Guizhou Agric Sci (贵州农业科学), 2008, 36(5): 39–41 (in Chinese with English abstract)



[3]Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37–47



[4]Qi C-H(戚昌瀚), He H-H(贺浩华), Shi Q-H(石庆华), Zeng X-J(曾宪江). Studies on the relationship between the characteristics of the dry matter production and yield potential in the large-panicle type rice. Acta Agron Sin (作物学报), 1986, 12(2): 121–127 (in Chinese with English abstract)



[5]Ao H-J(敖和军), Wang S-H(王淑红), Zou Y-B(邹应斌), Peng S-B(彭少兵), Tang Q-Y(唐启源), Fang Y-X(方远祥), Xiao A-M(肖安民), Chen Y-M(陈玉梅), Xiong C-M(熊昌明). Sci Agric Sin (中国农业科学), 2008, 41(7): 1927–1936 (in Chinese with English abstract)



[6]Wu W-G(吴文革), Zhang H-C(张洪程), Qian Y-F(钱银飞), Chen Y(陈烨), Xu J(徐军), Wu G-C(吴桂成), Zhai C-Q(翟超群), Huo Z-Y(霍中洋), Dai Q-G(戴其根). Analysis on dry matter production characteristics of middle-season indica super hybrid rice. Chin J Rice Sci (中国水稻科学), 2007, 21(3): 287–293 (in Chinese with English abstract)



[7]Wu G-C(吴桂成), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Gao H(高辉), Wei H-Y(魏海燕), Sha A-Q(沙安勤), Xu Z-J(徐宗进), Qian Z-H(钱宗华), Sun J-Y(孙菊英). Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in south China. Acta Agron Sin (作物学报), 2010, 36(11): 1921–1930 (in Chinese with English abstract)



[8]Guo Y-C(郭玉春), Lin W-X(林文雄), Liang Y-Y(梁义元), Yu G-J(余高镜), Chen H-F(陈鸿飞). Physioecological studies on dry matter production and yield formation in new plant type (NPT) rice: I. Dry matter production and grain-filling characteristics in NPT rice. J Fujian Agric Univ (福建农业大学学报), 2001, 30(1): 16–21 (in Chinese with English abstract)



[9]Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Y, Yang S H, Chen L J, Xia B, Peng S B. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res, 2009, 114: 91–98



[10]Peng S B, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552–1559 



[11]Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2009, 108: 32-38



[12]Ling Q-H(凌启鸿). Quality of Crop Population (作物群体质量). Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 85-91 (in Chinese)



[13]Yang H-J(杨惠杰), Yang R-C(杨仁崔), Li Y-Z(李义珍), Zheng J-S(郑景生), Jiang Z-W(姜照伟). Determination factor for super-high yield of rice. Fujian J Agric Sci (福建农业学报), 2002, 17(4): 199–203 (in Chinese with English abstract)



[14]Xie H-A(谢华安), Wang W-Q(王乌齐), Yang H-J(杨惠杰), Yang G-Q(杨高群), Li Y-Z(李义珍). The characteristics of super high-yielding hybrid rice. Fujian J Agric Sci (福建农业学报), 2003, 18(4): 201–204 (in Chinese with English abstract)



[15]Yang J-C(杨建昌), Du Y(杜永), Wu C-F(吴长付), Liu L-J(刘立军), Wang Z-Q(王志琴), Zhu Q-S(朱庆森). Growth and development characteristics of super-high-yielding mid-season japonica rice. Sci Agric Sin (中国农业科学), 2006, 39(7): 1336–1345 (in Chinese with English abstract)



[16]Shi H-R(史鸿儒), Zhang W-Z(张文忠), Xie W-X(解文孝), Yang Q(杨庆), Zhang Z-Y(张振宇), Han Y-D(韩亚东), Xu Z-J(徐正进), Chen W-F(陈温福). Analysis of matter production characteristics under different nitrogen application patterns of japonica super rice in north China indica super hybrid rice. Acta Agron Sin(作物学报), 2008, 34(11): 1985–1993 (in Chinese with English abstract)



[17]Takai T, Matsuura S, Nishio T, Ohsumi A, Shiraiwa T, Horie T. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Res, 2006, 96: 328–335



[18]Ma J(马均), Zhu Q-S(朱庆森), Ma W-B(马文波), Tian Y-H(田彦华), Yang J-C(杨建昌), Zhou K-D(周开达). Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice. Sci Agric Sin (中国农业科学), 2003, 36(4): 375–381 (in Chinese with English abstract)



[19]Zhao Q-Z(赵全志), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Relations between canopy apparent photosynthesis and store matter in stem and sheath between and yield and nitrogen regulations in rice. Sci Agric Sin (中国农业科学), 2001, 34(3): 304–310



[20]Wei H-Y(魏海燕), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Hang J(杭杰), Ma Q(马群), Zhang S-F(张胜飞), Zhang Q(张庆), Liu Y-Y(刘艳阳). Characteristics of matter production and accumulation in rice genotypes with different N use efficiency. Acta Agron Sin(作物学报), 2007, 33(11): 1802–1809 (in Chinese with English abstract)



[21]Zhang H-C(张洪程), Ma Q(马群), Yang X(杨雄), Li M(李敏), Li G-Y(李国业), Dai Q-G(戴其根), Huo Z -Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉), Liu Y-Y(刘艳阳). The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. Acta Agron Sin(作物学报), 2012, 38(1): 86–98 (in Chinese with English abstract)



[22]Ma Q(马群), Yang X(杨雄), Li M(李敏), Li G-Y(李国业), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z -Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉). Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin (中国农业科学), 2011, 44(20): 4159–4169 (in Chinese with English abstract)



[23]Li M(李敏), Zhang H-C(张洪程), Ma Q(马群), Yang X(杨雄), Li G-Y(李国业), Wei H-Y(魏海燕), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Cao L-Q(曹利强), Wu H(吴浩). Root morphological and physiological characteristics of rice cultivars with high yield and high nitrogen use efficiency. Acta Agron Sin (作物学报), 2012, 38(4): 648–656 (in Chinese with English abstract)



[24]Li M(李敏), Zhang H-C(张洪程), Li G-Y(李国业), Wei H-Y(魏海燕), Yin C-Y(殷春渊), Ma Q(马群), Yang X(杨雄). Genotypic difference in nitrogen use efficiency in rice and its morphological and physiological mechanisms. J Nucl Agric Sci (核农学报), 2011, 25(5): 1057–1063 (in Chinese with English abstract)



[25]Zhang H S(张洪松), Tadatoshai I(岩田忠寿), Sato B(佐腾勉). Comparison of matter production and nutrition characteristics for japonica hybrid rice and convention rice. Southwest China J Agric Sci (西南农业学报), 1995, 8(4):11–16 (in Chinese)



[26]Dong G-C(董桂春), Wang Y-L(王余龙), Zhang C-S(张传胜), Zhang Y-F(张岳芳), Chen P-F(陈培峰), Yang L-X(杨连新), Huang J-Y(黄建晔), Long Y-C(龙银成). Study on characteristics of dry matter accumulation and distribution in conventional indica rice cultivars with different nitrogen use efficiency for grain output. Acta Agron Sin (作物学报), 2007, 33(1): 137–142 (in Chinese with English abstract)



[27]Zhang Y L, Fan J B, Wang D S, Shen Q R. Genotypic differences in grain yield and physiological nitrogen use efficiency among rice cultivars. Pedosphere, 2009, 19(6): 681–691



[28]Zhai H-Q(翟虎渠), Cao S-Q(曹树青), Wan J-M(万建民), Lu W(陆巍), Zhang R-X(张荣铣), Li L-B(李良璧), Kuang T-Y(匡廷云), Min S-K(闵绍楷), Zhu D-F(朱德峰), Cheng S-H(程式华). A Study on the relationship between photosynthetic performance of grain filling stage and yield in super high yielding hybrid rice. Sci China (Ser C) (中国科学•C辑), 2002, 32(6): 211–217(in Chinese)



[29]Dong G-C(董桂春), Wang Y-L(王余龙), Zhou J(周娟), Zhang B(张彪), Zhang C-S(张传胜), Zhang Y-F(张岳芳), Yang L-X(杨连新), Huang J-Y(黄建晔). Difference of nitrogen accumulation and translocation in conventional indica rice cultivars with different nitrogen use efficiency for grain output. Acta Agron Sin(作物学报), 2009, 35(1): 149–155 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!