欢迎访问作物学报,今天是 2025年1月8日 星期三

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 449-454.doi: 10.3724/SP.J.1006.2013.00449

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米区域试验中误差方差的异质性及其对品种评价的影响

王春平1,*,胡希远2,*,沈琨仑2   

  1. 1河南科技大学农学院,河南洛阳471003; 2西北农林科技大学农学院,陕西杨凌712100
  • 收稿日期:2012-05-18 修回日期:2012-10-05 出版日期:2013-03-12 网络出版日期:2012-12-11
  • 通讯作者: 胡希远, E-mail: xiyuanhu@yahoo.com.cn; 王春平, E-mail: chunpingw@163.com
  • 基金资助:

    本研究由陕西省自然科学基金项目(2012JM3009)和河南科技大学人才基金项目(09001595)资助。

Heterogeneity of Error Variance and Its Effect on the Variety Evaluation in Corn Regional Trials

WANG Chun-Ping1,*,HU Xi-Yuan 2,*,SHEN Kun-Lun2   

  1.  1 College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China; 2 College of Agronomy, Northwest A&F University, Yangling 712100, China;
  • Received:2012-05-18 Revised:2012-10-05 Published:2013-03-12 Published online:2012-12-11
  • Contact: 胡希远, E-mail: xiyuanhu@yahoo.com.cn; 王春平, E-mail: chunpingw@163.com

摘要:

为了研究我国玉米区域试验中误差方差的异质性存在状况及其对品种评价的作用, 2003—2006年东北和华北16组玉米区域试验资料为依据,对玉米区域试验各环境试验误差方差差异状况及误差方差同质模型和异质模型的拟合效果进行了验证,并对品种效应差异显著性测验在误差同质模型和误差异质模型分析结果的差异状况进行了比较。结果表明,在分析的所有试验中,试验误差方差在环境间具有较大差异;误差方差异质模型比误差方差同质模型对试验数据拟合效果普遍较好;模型是否考虑误差方差的异质性对品种-环境交互效应测验结果有较大影响,而对品种主效应测验结果影响极小;误差方差异质模型比误差方差同质模型测验效率高

关键词: 玉米, 区域试验, 误差变异, 模型

Abstract:

In order to study the heterogeneity state of error variance and its effect on the variety evaluation in corn regional trials, based on the 16 data sets of the corn regional trials in the Northeast and North China from 2003 to 2006, we assessed the error variation between the environments and the fit-goodness of models for homogeneous and heterogeneous errors, and compared the statistical tests for trial effects from the two models. The results showed that the error variance largely varied between environments in all of the considered trials. The model for heterogeneous errors fitted the trial data better than the model for homogeneous errors. Whether the heterogeneity of error variance was considered in the models considerably impacted the test about variety-environment interaction effects and little did the test about variety effects. The model for heterogeneous errors had higher test efficiency than the model for homogeneous errors.

Key words: Corn, Regional trial, Error variation, Model

[1]Mo H-D(莫惠栋). Statistics for Agricultural Experiments (农业试验统计), 2nd edn. Shanghai: Shanghai Scientific and Technical Publishers, 1992. pp 260−278 (in Chinese)



[2]Gai J-Y(盖钧镒). Statistic Methods for Experiments (试验统计方法). Beijing: China Agriculture Press, 2000. pp 120−124 (in Chinese)



[3]Wang G-S(王松桂), Chen M(陈敏), Chen L-P(陈立萍). Linear Statistical Model (线性统计模型). Beijing: Higher Education Press, 2007. pp 164−178 (in Chinese)  



[4]Casanoves F, Macchiavelli R, Balzarini M. Error variation in multienvironment peanut trials: within-trial spatial correlation and between-trial heterogeneity. Crop Sci, 2005, 45: 1927−1933



[5]Zimmerman D L, Harville D A. A random field approach to the analysis of field-plot experiments and other spatial experiments. Biometrics, 1991, 47: 223−239



[6]Schabenberger O, Pierce F J. Contemporary Statistical Models for the Plant and Soil Sciences. Boca Raton London New York Washington, D.C.: CRC Press, 2002. pp 599−648



[7]Stroup W W. Power analysis based on spatial effects mixed models: a tool for comparing design and analysis strategies in the presence of spatial variability. J Agric Biol Environ Stat, 2002, 7: 491−511



[8]Hu X-Y(胡希远), Spilke J. Spatial variability and its statistical control in field experiment. Acta Agron Sin (作物学报), 2007, 33(4): 620−624 (in Chinese with English abstract)



[9]Smith A B, Cullis B R, Thompson R. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics, 2001, 57: 1138−1147



[10]Smith A B, Cullis B R, Thompson R. The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J Agric Sci, 2005, 143: 449−462



[11]Little R C, Milliken G A, Stroup W W, Wolfinger R D. SAS System for Mixed Models. Cary, NC: SAS Institute, Inc. 1996. pp 303−326



[12]Verbeke G, Molenberghs G. Linear Mixed Models in Practice. New York: Springer-Verlag, 1997. pp 185−210



[13]Henderson C R. Applications of Linear Models in Animal Breeding. University of Guelph, Guelph, AB, 1984



[14]Denis J B, Pipho H P, van Eeuwijk F A. Modeling expectation and variance for genotype by environment data. Heredity, 1997, 79: 162−171



[15]Brady T W, Kathleen B W, Andrzej T G. Linear Mixed Models. New York: CRC Press, 2002



[16]Bozdogan H. Akaike’s information criterion and recent developments in information complexity. J Math Psychol, 2000, 44: 62−91



[17]Wolfinger R. Covariance structure selection in general mixed models. Commu Stat Simul Comput, 1993, 22: 1079−1106



[18]Gauch H G. Model selection and validation for yield trials with interaction. Biometrics, 1988, 44: 705−715



[19]Gauch H G. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488−1500



[20]Finly K W, Wilkinson G N. The analysis of adaptation in a plant breeding program. Aust J Agric Res, 1963, 14: 742−754



[21]Eberhart S A, Russell W A. Stability parameters for comparing varieties. Crop Sci, 1966, 6: 36−40



[22]Hu X-Y(胡希远), You H-L(尤海磊), Ren C-H(任长宏), Wu D(吴冬), Li J-P(李建平). Analysis of crop variety regional trials based on selection of covariance structures. Acta Agron Sin (作物学报), 2009, 35(11): 1981−1989 (in Chinese with English abstract)



[23]Hu X Y, Spilke J. Variance–covariance structure and its influence on variety assessment in regional crop trials. Field Crops Res, 2011, 120: 1−8

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text
204
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 204

  From Others local
  Times 6 198
  Rate 3% 97%

Abstract
404
Just accepted Online first Issue
0 0 404
  From Others local
  Times 75 329
  Rate 19% 81%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!