欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 816-826.doi: 10.3724/SP.J.1006.2013.00816

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻蛋白二硫键异构酶基因沉默载体构建及其转基因后代的高温结实特性分析

刘光快,曹珍珍,韦克苏,潘刚,苏达,张春娇,程方民*   

  1. 浙江大学农业与生物技术学院, 浙江杭州310058
  • 收稿日期:2012-11-22 修回日期:2013-01-15 出版日期:2013-05-12 网络出版日期:2013-02-19
  • 通讯作者: 程方民, E-mail: chengfm@zju.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31071366, 31271655, 30871488)资助。

RNAi Vector Construction for Protein Disulfide Isomerase Gene and Seed Setting Characteristics in Offspring of Transgenic Rice under High Temperature Treatment

IU Guang-Kuai,CAO Zhen-Zhen,WEI Ke-Su,PAN Gang,SU Da,ZHANG Chun-Jiao,CHENG Fang-Min*   

  1. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
  • Received:2012-11-22 Revised:2013-01-15 Published:2013-05-12 Published online:2013-02-19
  • Contact: 程方民, E-mail: chengfm@zju.edu.cn

摘要:

采用RT-PCR法亚克隆了PDI基因保守区内450 bp的靶标序列作为干扰区段, 构建了含有内含子hpRNA (ihpRNA)的双元表达载体pTCK303-RiOsPDI, 经农杆菌介导转化日本晴, 获得转基因植株; 通过在T0代对其潮霉素(Hyg)抗性基因的PCR鉴定, 确定携带有干扰片段的T-DNA区已整合到水稻基因组中, 且在转基因T1代符合31的分离模式。半定量PCR和荧光定量PCR的检测结果表明, PDI基因沉默转基因阳性植株不同器官中的PDI表达量均显著降低, 尤其是其籽粒中表达量较微, 几乎能引起靶基因80%左右沉默。对转基因T2代植株的高温结实特性和籽粒理化品质的检测结果, PDI基因沉默会引起高温胁迫处理下结实率的大幅度降低, 耐热性显著下降, 但其在常温处理下的结实率与对照之间无显著差异。此外, PDI基因沉默后, 稻米的透明度下降、垩白度增加, 但对籽粒粗蛋白总量和直链淀粉含量的影响不甚明显。

关键词: 水稻, 蛋白二硫键异构酶, 基因沉默, RNAi载体构建, 高温胁迫, 结实特性

Abstract:

To clarify the effect of PDI gene silence on rice yield traits and grain quality, we sub-cloned a 450 bp RNAi fragment from Nipponbare by RT-PCR, and successfully constructed a binary-vector pTCK303-RiOsPDI containing intron hpRNA (ihpRNA), then transformed it into the callus of wild type Nipponbare mediated by EHA105. The T-DNA region for PDI RNA interference in regenerating rice plants was integrated with rice genome via single copy in T0 generation transgenic plants, and showed a 3:1 genetic mode in T1 transgenic population, which could be conformed by PCR amplifying analysis and Southern blotting identification. The PCR and qRT-PCR for PDI gene expression in different organs showed that there were much lower level of PDI expression in grains, leaves, stem and sheath for transgenic plants compared with those for wild type Nipponbare, with almost 80% of the dropping in transgenic seeds. The influence of high temperature stress on seed setting traits, panicle agronomic traits and grain quality and also its relation to PDI gene expression in developing grains was further examined with T1 generation of transgenic plants imposed to two temperature treatments under the controlled temperature chambers, the results indicated that PDI silence transgenic plants had a remarkable lower seed setting rate, somewhat lower grain weight compared with its wild phenotype under the high temperature treatment in despite of no obviously varying with its wild phenotype under normal developmental condition, suggesting that PDI gene should be  probably responsible for rice tolerance to high temperature stress. Moreover, there were lower translucence and higher chalky degree for transgenic plants than for Nipponbare, although no significant difference were observed in grain total protein and amylose content between PDI silence transgenic plant and its CK.

Key words: Rice (Oryza sativa L.), Protein disulfide isomerase (PDI), Gene silence, RNA interference, High temperature stress, Seed setting characteristics

[1]Noiva R, Lennarz W J. Protein disulfide isomerase: a multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem, 1992, 267: 3553−3556



[2]Wilkinson B, Gilbert H F. Protein disulfide isomerase. Biochim Biophys Acta, 2004, 1699: 35−44



[3]Urade R. Cellular response to unfolded proteins in the endoplasmic reticulum of plants. FEBS J, 2007, 274: 1152–1171



[4]Kaufman R J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev, 1999, 13: 1211–1233



[5]Tian G, Xiang S, Noiva R, Lennarz W J, Schindelin H. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell, 2006, 124: 61–73



[6]Puig A, Gilbert H F. Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J Biol Chem, 1994, 269: 7764−7771



[7]Lebeche D, Lucero H A, Kaminer B. Calcium binding properties of rabbit liver protein disulfide isomerase. Biochem Biophys Res Commun, 1994, 202: 556−561



[8]Wetterau J R, Combs K A, Spinner S N, Joiner B J. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem, 1990, 265: 9800−9807



[9]Gilbert H F. Protein chaperones and protein folding. Curr Opin Biotechnol, 1994, 5: 534−540



[10]Wadahama H, Kamauchi S, Ishimoto M, Kawada T, Urade R. Protein disulfide isomerase family proteins involved in soybean protein biogenesis. FEBS J, 2007, 274: 687−703



[11]Edman J C, Ellis L, Blacher R W. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature, 1985, 317: 267−270



[12]Yamauchi K, Lmabert N, Fredman R B. Sequence of membrane-associated thyroid hormone binding protein from bovine liver: its identity with protein disulfide isomerase. Biochem. and Biophys Res Commun, 1987, 146: 1485−1490



[13]Walker K W, Gilbert H F. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J Biol Chem, 1997, 272: 8845–8848



[14]Van Lith M, Karala A R, Bown D, Gatehouse J A, Ruddock L W, Saunders P T K, Benham A M. A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells. Mol Biol Cell, 2007, 18: 2795–2804



[15]Xu Z J, Ueda K, Kiyoshi M, Ono M, Inoue M. Molecular characterization of a novel protein disulfide isomerase in carrot. Gene, 2002, 284: 225–231



[16]Cao Y-Y(曹云英), Duan H(段骅), Yang L-N(杨立年), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Effect of high temperature during heading and early grain filling on grain yield of indica rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin (作物学报), 2009, 35(3): 512−521 (in Chinese with English abstract)



[17]Wei K-S(韦克苏), Cheng F-M(程方民), Dong H-T(董海涛), Zhang Q-F(张其芳), Liu K-G(刘奎刚), Cao Z-Z(曹珍珍). Microarray analysis of gene expression profile to grain storage metabolism in rice endosperm as affected by high temperature at filling stage. Sci Agric Sin (中国农业科学), 2010, 43(1): 1−11 (in Chinese with English abstract)



[18]Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takaiwa F. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant Cell Physiol, 2009, 50: 1532–1543



[19]Wei K-S(韦克苏), Zhang Q-F(张其芳), Cheng F-M(程方民), Chen N(陈能), Xie L-H(谢黎红). Expression profiles of rice soluble starch synthase (SSS) genes in response to high temperature stress at filling stage. Acta Agron Sin (作物学报), 2009, 35(1): 18−24 (in Chinese with English abstract)



[20]Zakaria S, Mastuda T, Tajima S, Nitta Y. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci, 2002, 5: 160−168



[21]Auer C, Frederick R. Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol, 2009, 27: 644−651



[22]Hamilton A J, Baulcombe D C. A novel species of small antisense RNA in post-transcripional gene silencing. Science, 1999, 286: 950−952



[23]Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol, 1996, 32: 191−222



[24]Ko H S, Uehara T, Nomur Y. Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. J Biol Chem, 2002, 277: 35386−35392



[25]Yang K Z, Xia C, Liu X L, Dou X Y, Wang W, Chen L Q, Zhang X Q, Xie L F, He L Y, Ma X, Ye D. A mutation in THERMOSENSITIVE MALE STERILE 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J, 2009, 57: 870–882



[26]Fatima C A, Sonia M B, Carlos M, Wagner C O, Elizabeth P B F. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol, 2001, 126:1042–1054



[27]Wakasa Y, Yasuda H, Ono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L J, Takaiwa F. Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J, 2011, 65: 675–689



[28]Houston N L, Fan C, Xiang Q Y, Schulze J M, Jung R, Boston R S. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol, 2005, 137: 762–778



[29]Onda Y, Kumamaru T, Kawagoe Y. ER membrane localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm. Proc Natl Acad Sci USA, 2009, 106: 14156−14161



[30]Koh A, Nishimura K, Urade R. Relationship between endogenous protein disulfide isomerase family proteins and glutenin macropolymer. J Agric Food Chem, 2010, 58: 12970–12975



[31]Li C P, Larkins B A. Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol Biol, 1996, 30: 873−882



[32]Takemoto Y, Coughlan S J, Okita T W, Satoh H, Ogawa M, Kumamaru T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol, 2002, 128: 1212−1222



[33]Muench D G, Wu Y, Zhang Y, Li X, Boston R S, Okita T W. Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant Cell Physiol, 1997, 38: 404–412



[34]Satoh-Cruz M, Crofts A J, Takemoto-Kuno Y, Sugino A, Washida H, Crofts N, Okita T W, Ogawa M, Satoh H, Kumamaru T. Protein disulfide isomerase like 1-1 participates in the maturation of proglutelin within the endoplasmic reticulum in rice endosperm. Plant Cell Physiol, 2010, 51: 1581–1593



[35]Majoul I, Ferrari D, Söling H D. Reduction of protein disulfide bonds in an oxidizing environment the disulfide bridge of cholera toxin A-subunit is reduced in the endoplasmic reticulum. FEBS Lett, 1997, 401: 104−108



[36]Han X H, Wang Y H, Jiang L, Ren Y L, Liu F, Peng C, Li J J, Jin X M, Wu F Q, Wang J L, Guo X P, Zhang X, Cheng Z J, Wan J M. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. J Exp Bot, 2012, 63: 121–130

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!