欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1266-1275.doi: 10.3724/SP.J.1006.2013.01266

• 耕作栽培·生理生化 • 上一篇    下一篇

籽粒蛋白质含量不同的转基因水稻株系产量形成特点

王康君,熊溢伟,葛立立,张耗,王志琴,杨建昌,刘立军*   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州 225009
  • 收稿日期:2012-11-01 修回日期:2013-01-15 出版日期:2013-07-12 网络出版日期:2013-03-22
  • 基金资助:

    本研究由国家自然科学基金项目(31171481), 国家公益性行业(农业)科研专项(201203031-2), 国家重点基础研究发展计划(973计划)项目(2009CB118603, 2012CB114306), 江苏高校优势学科和扬州大学科技创新培育基金项目(2012CXJ051)资助。

Yield Formation Characteristics of Transgenic Rice Strains with Different Protein Contents in Grains

WANG Kang-Jun,XIONG Yi-Wei,GE Li-Li,ZHANG Hao,WANG Zhi-Qin,YANG Jian-Chang,LIU Li-Jun*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and Lower Reaches of Yangtze River of Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China
  • Received:2012-11-01 Revised:2013-01-15 Published:2013-07-12 Published online:2013-03-22

摘要:

水稻籽粒蛋白质含量与产量的关系仍不十分清楚。本试验以日本晴和以其为亲本通过转基因方式获得的5个籽粒蛋白质含量有明显差异的水稻株系为材料,在大田栽培条件下研究上述株系产量的形成特点。结果表明,在相同施氮量条件下,蛋白质含量高的水稻株系,其产量水平相对较低,结实率与籽粒蛋白质含量呈显著负相关。随着施氮水平的提高,各株系籽粒蛋白质含量和产量明显增加,产量增加的主要原因是单位面积穗数和每穗粒数的增加。抽穗前积累的干物质少,抽穗后叶片功能期相对较短,光合速率低,灌浆结实期茎秆中的干物质和非结构性碳水化合物向籽粒转运率低,引起结实率下降,是导致籽粒蛋白质含量高的水稻株系产量降低的重要生理原因。

关键词: 水稻, 籽粒, 蛋白质含量, 产量形成

Abstract:

Relationship between protein content (PC) in grains and grain yield in rice has not been clearly understood. Nipponbare and its five transgenic strains with different PCs in grains were used in the study to investigate their yield formation characteristics under the condition of field cultivation. There were two main results: (1) Under the same nitrogen amount, grain yields were lower in strains with higher PC in grains. Filled grain rate was very significantly and negatively correlated with PC in grains. With an increase in N fertilizer, PC in grains and grain yield significantly increased and the increase in yield was mainly dependent on the increase in panicle number and grains per panicle. (2) Under the same nitrogen amount, the strains with higher PC had less dry matter accumulation before heading stage, shorter functional period and lower photosynthetic rate of flag leaves after heading stage and lower apparent translocation amounts of dry matter and non-structure carbohydrates (NSC) from stems to grains during grain filling stage, leading to lower filled grain rate, which is the possible physiological reason for lower yield in those strains.

Key words: Rice, Grain, Protein content, Yield formation

[1]FAO. Statistical Databases. Rome: Food and Agriculture Organization (FAO) of United Nations, 2011



[2]Juliano B O, ed. Rice Chemistry and Technology, 2nd edn. Minnestoa USA: American Association of Cereal Chemists Inc, 1985. pp 1–174



[3]Jiao A-X(焦爱霞), Yang C-R(杨昌仁), Cao G-L(曹桂兰), Li D-H(李点浩), Guo J-C(郭建春), Jin Z-H(金钟焕), Jin H-L(金弘烈), Li G-X(李圭星), Han L-Z(韩龙植). Progress in genetic research on protein content of rice. Sci Agric Sin (中国农业科学), 2008, 41(1): 1–8 (in Chinese with English abstract)



[4]Yu H-L(于洪兰), Wang B-L(王伯伦), Wang S(王术), Tong W(佟伟), Wang Y(王一), Huang Y-C(黄元财), Jiang W-C(蒋文春). Comparison of relationships between yield and eating quality in different types of rice varieties. Crops (作物杂志), 2009, (1): 46-49 (in Chinese with English abstract)



[5]Wang Q-J(王秋菊), Li M-X(李明贤), Chi L-Y(迟立勇), Zhao H-L(赵宏亮), Jiang H(姜辉). Effect of control irrigation on rice yield and quality. J Northeast Agric Univ (东北农业大学学报), 2009, 40(10): 5–8 (in Chinese with English abstract)



[6]Borah R C, Baruah A M. Effect of light stress on chlorophyll, starch, protein content and grain yield in rice. India J Plant Physiol, 1995, 38: 320–321



[7]He X-L(何小玲), Zuo Q-F(左清凡), Zhang X(张夏). Analyses on protein content of grain for different rice varieties. Chin Agric Sci Bull (中国农学通报), 2006, 22(8): 144–147 (in Chinese with English abstract)



[8]Jenner C F, Ugalde T D, Aspinall D. The physiology of starch and protein deposition in the endosperm of wheat. Aust J Physiol, 1990, 18: 211–226



[9]Xie G-X(谢桂先), Rong X-M(荣湘民), Liu Q(刘强), Peng J-W(彭建伟), Zhu H-M(朱红梅), Yu F-M(于方明). Effects of different combined fertilization on yield and protein contents of rice grain. J Hunan Agric Univ (Nat Sci)(湖南农业大学学报•自然科学版), 2004, 30(5): 405–410 (in Chinese with English abstract)



[10]Weng J-F(翁建峰), Wan X-Y(万向元), Wu X-J(吴秀菊), Wang H-L(王海莲). Zhai H-Q(翟虎渠), Wan J-M(万建民). Stable expression of QTL for AC and PC of milled rice (Oryza sativa L.) using a CSSL population. Acta Agron Sin (作物学报), 2006, 32(1): 14–19 (in Chinese with English abstract)



[11]Zhang X-M(张雪明). The correlation between protein content and yield of rice grain and rice straw. Seed (种子), 1988, (4): 65 (in Chinese)



[12]Liu L-J(刘立军), Wang Z-Q(王志琴), Sang D-Z(桑大志), Yang J-C(杨建昌). Effect of nitrogen management on rice yield and grain quality. J Yangzhou Univ (Nat Sci) (扬州大学学报•农业与生命科学版), 2002, 23(3): 46–50 (in Chinese with English abstract)



[13]Zhou P-N(周培南), Feng W-Z(冯惟珠), Xu N-X(许乃霞), Zhang Y-J(张亚洁), Su Z-F(苏祖芳). Effects of nitrogen and density on yield and grain quality of rice. Jiangsu Agric Res(江苏农业研究), 2001, 22(1): 27–31 (in Chinese with English abstract)



[14]Zhou J-M(周江明), Zhao L(赵琳), Dong Y-Y(董越勇), Xu J(徐进), Bian W-Y(边武英), Mao Y-C(毛杨仓), Zhang X-F(章秀福). Nitrogen and transplanting density interaction on the rice yield and N use rate. Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 16(2): 274–281 (in Chinese with English abstract)



[15]Borrell A K, Garside A L, Fukai S, Reid D J. Grain quality of flooded rice is affected by season, nitrogen rate and plant type. Aust J Agric Res, 1999, 50: 1399–1408



[16]Xie L-H(谢黎虹), Ye D-C(叶定池), Hu P-S(胡培松), Chen N(陈能), Tang S-Q(唐绍清), Luo J(罗炬), Jiao A-X(焦爱霞). Effects of nitrogen fertilizer application rate and management strategy on grain yield and quality of rice variety “Yongyou 6”. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(4): 789–794 (in Chinese with English abstract)



[17]Yang W-Y(杨文钰), Tu N-M(屠乃美). Crop Cultivation Science (作物栽培学各论). Beijing: China Agriculture Press, 2003. pp 19–28 (in Chinese)



[18]Yoshida S, Forno D, Cock J, Gomez K. Determination of sugar and starch in plant tissue. In: Yoshida S. ed. Laboratory Manual for Physiological Studies of Rice. The International Rice Research Institute, Philippines, 1976, pp 46–49



[19]Ling Q-H(凌启鸿). The Quality of Crop Population (作物群体质量). Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 44–58 (in Chinese)



[20]Miao X-J(缪小建). Study on Non-structural Carbohydrates Translocation Characteristic and Yield and Quality Formation in Rice. MS Thesis of Nanjing Agricultural University, 2008 (in Chinese with English abstract)



[21]Chikov V, Bakirova G. Relationship between carbon and nitrogen metabolisms in photosynthesis. Photosynthetica, 1999, 37: 519–527



[22]Gladun I V, Karpov E A. Distribution of assimilates from the flag leaf of rice during the reproductive period of development. Russ J Plant Physiol, 1993, 40: 215–219



[23]Cao M-L(曹孟良). The genetic analysis of the premature senility of rice leaves. Hunan J Agric Sci (湖南农业科学), 2001, (1): 13–14 (in Chinese)



[24]Ma X-L(马绪亮), Li H-S(李合松). Review of the mechanisms of hybrid rice early aging. Hunan J Agric Sci (湖南农业科学), 2007, (3): 59–61 (in Chinese)



[25]Wang L(王亮), Zhu J-G(朱建国), Zhu C-W(朱春梧), Cao J-L(曹际玲), Wang M-N(王明娜), Zeng Q(曾青), Xie Z-B(谢祖彬), Liu G(刘钢). Relationship between decrease in nitrogen content and activities of key enzymes related to nitrogen metabolism in rice leaves under elevated CO2 concentration. Chin J Rice Sci (中国水稻科学), 2008, 2(5): 499–506 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!