欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1403-1411.doi: 10.3724/SP.J.1006.2014.01403

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻的侧根发育及其影响因素

刘大同,荆彦平,陈晶晶,余徐润,王忠*   

  1. 扬州大学生物科学与技术学院 / 江苏省作物遗传生理重点实验室,江苏扬州 225009
  • 收稿日期:2014-01-08 修回日期:2014-06-06 出版日期:2014-08-12 网络出版日期:2014-06-17
  • 通讯作者: 王忠, E-mail: wangzhong@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871467)和江苏省普通高校研究生创新基金(CXZZ11_0976)资助。

Rice Lateral Root Development and Its Impact Factors

LIU Da-Tong,JING Yan-Ping,CHEN Jing-Jing,YU Xu-Run,WANG Zhong*   

  1. College of Bioscience and Biotechnology, Yangzhou University / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China
  • Received:2014-01-08 Revised:2014-06-06 Published:2014-08-12 Published online:2014-06-17

摘要:

为了探明水稻侧根发育的过程和影响因素,以日本晴(粳稻)、扬稻6(籼稻)的不定根和种子根为材料,观察了侧根发育过程中的形态和细胞结构的变化;研究了生长调节物质、光照等因子对侧根发育的影响。结果显示,水稻侧根的发生起始于中柱鞘。相邻的内皮层细胞参与了侧根原基的发生和生长。侧根原基通过顶端生长点的分裂、分化和基部细胞伸长向外生长,侧根在露出过程中改变了母根皮层和表皮结构。外源生长素可促进侧根的发生,但浓度过高则抑制侧根原基的露出;稻苗切除芽后侧根发生减少,主根生长量下降;切除根尖打破了主根顶端优势,促进侧根发生和生长。单侧照光能诱导向光侧的侧根发生。脱落酸在低浓度下对侧根发生有促进作用;Ca2+促进侧根发生和主根生长,而EDTA抑制侧根发生和主根生长。种子根和不定根的生长对试验因子的响应趋势基本一致。

关键词: 水稻, 侧根发育, 中柱鞘, 内皮层, 生长素, 光照

Abstract:

The adventitious roots and primary roots of Nipponbare, Yangdao 6were used to measure lateral root number and the growth increment by Image J software with scanning photograph. Morphological and structural changes of lateral root primodia were observed by applying Spurr resin embedding and semi-thin sectioning, and light microscopy. Impacts of the lateral root emergence on the parent root structure was observed by fluorescence microscopy and scanning electron microscopy. Treatments with plant hormones, metal ions, illumination, and cutting off shoots or root tips were set up to analyse their influence on lateral root development. Results showed that rice lateral root initiation occurred from the pericycle. The endodermis also participatedin the lateral root primodia formation and played protective as well as assistant roles in the process. The outward growth of lateral root primordia was realized by cell divisions of apical meristem and cell elongation at the base area. The cortex and epidermis structures of parent roots were also altered during the process of lateral root emergence. Exogenous IAA promoted the occurrence of lateral roots, but its high concentrations inhibited lateral root emergence. The number of lateral roots and growth of primary roots were significantly decreased when shoots were cut off. The apical dominance of root was lost when root tips were cut off, so that the growth of lateral roots and secondary lateral roots was accelerated. Unilateral illumination induced the increase of lateral roots in the light side. Abscisic acid at low concentrations promoted the formation of lateral roots. The formation of lateral roots and growth of primary root were promoted by Ca2+, while mostly inhibited by EDTA. The growth tendency of both adventitious roots and primary roots responsive to the treatments was basically consistent.

Key words: Rice, Lateral root development, Pericycle, Endodermis, IAA, Illumination

[1]Casimiro I, Marchant A, Bhaleraoc R P, Beeckmand T, Dhooged S, Swarupb R, Grahamb N, Inzéd D, Sandbergc G, Caseroa P J, Bennett M. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 2001, 13: 843–852



[2]Hochholdinger F, Zimmermann R. Conserved and diverse mechanisms in root development. Curr Opin Plant Biol, 2008, 11: 70–74



[3]Celenza J, Grisafi P L, Fink G R. A pathway for lateral root formation in Arabidopsis thaliana. Gene Dev, 1995, 9: 2131–2142



[4] Meyerowitz E M. Prehistory and history of Arabidopsis research. Plant Physiol, 2001, 125: 15–19



[5]Zhu Z X, Liu Y, Liu S J, Mao C Z, Wu Y R, Wu P. A gain-of-function mutation in OsIAA11 affects lateral root development in rice. Mol Plant, 2012, 5: 154–161



[6]Armstrong J, Armstrong W. Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot, 2005, 96: 625–638



[7]Rani Debi B, Taketa S, Ichii M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol, 2005, 162: 507–515



[8]Chhun T, Taketa S, Tsurumi S, Ichii M. The effects of auxin on lateral root initiation and root gravitropism in a lateral rootless mutant Lrt1 of rice (Oryza sativa L.). Plant Growth Regul, 2003, 39: 161–170



[9]Chen X, Shi J, Hao X, Liu H, Shi J, Wu Y, Wu Z, Chen M, Wu P, Mao C. OsORC3 is required for lateral root development in rice. Plant J, 2013, 74: 339–350



[10]王忠, 李卫芳, 顾蕴洁, 陈刚, 石火英, 高煜珠. 水稻胚乳的发育及其养分输入的途径. 作物学报, 1995, 21: 520–527



Wang Z, Li W F, Gu Y J, Chen G, Shi H Y, Gao Y Z. Development of rice endosperm and the pathway of nutrients entering the endosperm. Acta Agron Sin, 1995, 21: 520–527 (in Chinese with English abstract)



[11]Péret B, Rybel B D, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett M J. Arabidopsis lateral root development: an emerging story. Trends Plant Sci, 2009,14: 399–408



[12]Casero P, Casimiro I, Rodriguez-Gallardo L, Martín-Partido G, Lloret P. Lateral root initiation by asymmetrical transverse divisions of pericycle cells in adventitious roots of Allium cepa. Protoplasma, 1993, 176: 138–144



[13]Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E, Bayle V, Bonke M, De Smet I, Poethig S R, Helariutta Y, Haseloff J, Chriqui D, Beeckman T, Nussaume L. Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol, 2008, 146: 140–148



[14]Péret B, Larrieu A, Bennett M J. Lateral root emergence: a difficult birth. J Exp Bot, 2009, 60: 3637–3643



[15]Ljung K, Hullb A K, Celenzac J, Yamadad M, Estelled M, Normanlye J, Sandberga G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell, 2005, 17: 1090–1104 



[16]Marchant A, Bhalerao R, Casimiroc I, Eklöfb J, Caseroc P J, Bennetta M, Sandberg G. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell, 2002, 14: 589–597



[17]Laskowski M J, Williams M E, Nusbaum H C, Sussex I M. Formation of lateral root meristems is a two-stage process. Development, 1995, 121: 3303–3310



[18]Fukaki H, Okushima Y, Tasaka M. Auxin-mediated lateral root formation in higher plants. Int Rev Cytol, 2007, 256: 111–137



[19]Aloni R, Aloni E, Langhans M, Ullrich C. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot, 2006, 97: 883–893



[20]Li X, Mo X, Shou H, Wu P. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol, 2006, 47: 1112–1123



[21]Laplaze L, Benkova E, Casimirod I, Maes L, Vanneste S, Swarupe R, Weijersf D, Calvod V, Parizot B, Herrera-Rodrigueza M B, Offringaf R, Grahamh N, Doumasa P, Friml J, Bogusza D, Beeckman T, Bennette M. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell, 2007, 19: 3889–3900



[22]Chen C W, Yang Y W, Lur H S, Tsai Y G, Chang M C. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol, 2006, 47: 1–13



[23]郭栋梁, 李玲. ABA对植物侧根发生的调节. 亚热带植物科学, 2008, 37(1): 67–69



Guo D L, Li L. ABA regulation of lateral root development in plants. Subtrop Plant Sci, 2008, 37(1): 67–69 (in Chinese with English abstract)



[24]Müssig C, Shin G H, Altmann T. Brassinosteroids promote root growth in Arabidopsis. Plant Physiol, 2003, 133: 1261–1271



[25]Bao F, Shen J, Brady S R, Muday G K, Asami T, Yang Z B. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol, 2004, 134: 1624–1631



[26]Ivanchenko M G, Muday G K, Dubrovsky J G. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J, 2008, 55: 335–347



[27]Negi S, Ivanchenko M G, Muday G K. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J, 2008, 55: 175–187



[28]江玲, 管晓春. Ca2+-CaM系统在生长素诱导莴苣侧根原基形成中的作用. 南京农业大学学报, 2003, 26(1): 6–9



Jiang L, Guan X C. Role of Ca2+-CaM on lateral root primordium formation induced by auxins in lettuce seedlings. J Nanjing Agric Univ, 2003, 26(1): 6–9 (in Chinese with English abstract)



[29]Mo Y, Wang Z, Qian S, Gu Y. Effect of indoleacetic acid (IAA) on the negative phototropism of rice root. Rice Sci, 2004, 11: 125–128



[30]Wang Z, Mo Y, Qian S, Gu Y. Negative phototropism of rice root and its influencing factors. Sci China Ser C: Life Sci, 2002, 45: 485–496



[31]郭保卫. 水稻抛秧立苗机理及其调控. 扬州大学硕士学位论文, 扬州, 2010. pp 1–10



Guo B W. Mechanism of Seedling Standing and Establishment of Broadcasted Rice and it’s Regulation. Master Dissertation of Yangzhou University, Yangzhou, China, 2010. pp 1–10 (in Chinese with English abstract)



[32]张洪程, 戴其根, 霍中洋, 许轲, 魏海燕. 中国抛秧稻作技术体系及其特征. 中国农业科学, 2008, 41: 43–52



Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y. Cultivation technical system of rice seedling broadcasting and its characteristics. Sci Agric Sin, 2008, 41: 43–52 (in Chinese with English abstract)



[33]郭保卫, 陈厚存, 张春华, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 邢琳, 管文文, 黄幸福, 杨雄. 水稻抛栽秧立苗中的形态与生理变化. 作物学报, 2010, 36: 1715–1724



Guo B W, Chen H C, Zhang C H,Wei H Y, Zhang H C, Dai Q G, HuoZ Y, Xu K, Xing L, Guan W W, Huang X F, Yang X. Morphological and physiological changes in seedling standing and establishment of broadcasted rice seedlings. Acta Agron Sin, 2010, 36: 1715–1724 (in Chinese with English abstract)



[34]Sasidharan R, Chinnappa C C, Staal M, Elzenga J, Theo M, Yokoyama R, Nishitani K, Voesenek L A C J, Pierik R. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases. Plant Physiol, 2010, 154: 978–990



[35]?ukawska-Ku?ma K, Podgórska A, Rychter A M. Plasma membrane-generated ROS and their possible contribution to leaf cell growth of cucumber (Cucumis sativus) MSC16 mitochondrial mutant. Acta Physiol Plant, 2012, 34: 721–730



[36]Heyno E, Mary V, Schopfer P, Krieger-Liszkay A. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta, 2011, 234: 35–45



[37]Krieger-Liszkay A, van de Zalm E, Schopfer P. Production of reactive oxygen intermediates (O2?, H2O2, and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol, 2004, 136: 3114–3123



[38]Renew S, Heyno E, Schopfer P, Liszkay A. Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. Plant J, 2005, 44: 342–347



[39]汪月霞, 王忠, 刘全军, 赵会杰, 顾蕴洁, 钱晓旦, 袁志良. cpt1基因与水稻根负向光性运动的关系. 作物学报, 2009, 35: 1558–1561



Wang Y X, Wang Z, Liu Q J, Zhao H J, Gu Y J, Qian X D, Yuan Z L. Relationship between cpt1 gene and the negative phototropism in rice roots. Acta Agron Sin, 2009, 35: 1558–1561 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!