欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (12): 2090-2097.doi: 10.3724/SP.J.1006.2014.02090

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻糖苷水解酶基因OsBE1在叶绿体发育中的功能

王兴春1,2,*,王敏1,#,季芝娟3,陈钊4,刘文真3,韩渊怀2,杨长登3,*   

  1. 1 山西农业大学生命科学学院, 山西太谷 030801; 2山西农业大学农业生物工程研究所, 山西太谷 030801; 3中国水稻研究所水稻生物学国家重点实验室, 浙江杭州 310006; 4山西农业大学文理学院, 山西太谷 030801
  • 收稿日期:2014-07-16 修回日期:2014-09-16 出版日期:2014-12-12 网络出版日期:2014-10-20
  • 通讯作者: 王兴春, E-mail: wxingchun@163.com, Tel: 0354-6287191-307; 杨长登, E-mail: yangchangdeng@yahoo.com.cn, Tel: 0571-63370367
  • 基金资助:

    本研究由山西省自然科学基金项目(2013011028-1),水稻生物学国家重点实验室开放课题(090203)和山西省人才引进与开发专项资金资助。

Functional Characterization of the Glycoside Hydrolase Encoding Gene OsBE1 during Chloroplast Development in Oryza sativa

WANG Xing-Chun1,2,*,WANG Min1,#,JI Zhi-Juan3,CHEN Zhao4,LIU Wen-Zhen3,HAN Yuan-Huai2,YANG Chang-Deng3,*   

  1. 1 College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; 2 Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu 030801, China; 3 State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; 4 College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, China
  • Received:2014-07-16 Revised:2014-09-16 Published:2014-12-12 Published online:2014-10-20
  • Contact: 王兴春, E-mail: wxingchun@163.com, Tel: 0354-6287191-307; 杨长登, E-mail: yangchangdeng@yahoo.com.cn, Tel: 0571-63370367

摘要:

叶绿体在植物碳水化合物代谢中起着至关重要的作用,然而有关碳水化合物代谢在叶绿体发育过程中的功能却知之甚少。从水稻中克隆了一个Oryza sativa Branching Enzyme 1 (OsBE1)基因,该基因编码一个糖苷水解酶13家族的蛋白。OsBE1与拟南芥AtBE1的一致性为66%,但与水稻典型淀粉分支酶的一致性仅约为40%。该基因的T-DNA插入功能缺失突变体osbe1幼苗白化,且其白化表型不能用外源糖类拯救。osbe1突变体幼苗最终在三叶期死亡。淀粉染色表明,osbe1突变体中淀粉的含量与野生型无明显差异。进一步的研究表明,osbe1突变体叶绿体数目较少,且无明显的基质片层结构。构建了OsBE1基因过量表达载体pCAMBIA1300-35S-OsBE1,并将其转化水稻中花11。获得的108株转基因水稻中,77株表现不同程度的黄化。本文初步揭示了碳水化合物代谢调控叶绿体发育的机制,并为深入研究糖苷水解酶BE1的功能奠定了基础。

关键词: 糖苷水解酶, 碳水化合物代谢, OsBE1, 叶绿体, 水稻

Abstract:

Chloroplast plays an important role in plant carbohydrate metabolism; however the function of carbohydrate metabolism in the chloroplast development is poorly understood. The Oryza sativa Branching Enzyme 1 (OsBE1) gene, encoding a glycoside hydrolase family 13 protein, was cloned from rice. The identity between OsBE1 and Arabidopsis AtBE1 is 66%, but only 40% between OsBE1 and the classical starch branching enzymes in rice. A T-DNA insertion mutant of OsBE1 gene was identified. The seedlings of the osbe1 mutant were albino, and died at the three-leaf stage. This albino phenotype could not be rescued by exogenous carbohydrate. Starch staining showed no obvious difference in starch content between osbe1 and the wild type. Further studies showed that there were less chloroplasts in osbe1 mutant than in wild type, and there was no obvious stroma lamella in the osbe1 chloroplast. The overexpression vector pCAMBIA1300-35S-OsBE1 was constructed and transformed into rice variety Zhonghua 11. Finally, 108 transgenic lines were obtained and 77 lines of them showed etiolation in different degrees. The work not only sheds a novel insight into the regulation mechanism of carbohydrate metabolism on chloroplast development, but also lays a foundation for further understanding of the OsBE1’s function.

Key words: Glycoside hydrolase, Carbohydrate metabolism, OsBE1, Chloroplast, Rice (Oryza sativa L.)

[1]何美敬, 刘立峰, 穆国俊, 侯名语, 陈焕英, 崔顺立. 花生蔗糖合酶基因AhSuSy的克隆和干旱胁迫表达分析. 作物学报, 2012, 38: 2139–2146



He M J, Liu L F, Mu G J, Hou M Y, Chen H Y, Cui S L. Molecular cloning of sucrose synthase gene and expression analysis under drought stress in Peanut (Arachis hypogaea L.). Acta Agron Sin, 2012, 38: 2139–2146 (in Chinese with English abstract)



[2]Wang X C, Xue L, Sun J Q, Zuo J R. The Arabidopsis BE1 gene, encoding a putative glycoside hydrolase localized in plastids, plays crucial roles during embryogenesis and carbohydrate metabolism. J Integr Plant Biol, 2010, 52: 273–288



[3]Wang X C, Yang Z R, Wang M, Meng L Z, Jiang Y W, Han Y H. The BRANCHING ENZYME1 gene, encoding a glycoside hydrolase family 13 protein, is required for in vitro plant regeneration in Arabidopsis. Plant Cell Tissue Organ Cult, 2014,117: 279–291



[4]Nashilevitz S, Melamed-Bessudo C, Aharoni A, Kossmann J, Wolf S, Levy A A. The legwd mutant uncovers the role of starch phosphorylation in pollen development and germination in tomato. Plant J, 2009, 57: 1–13



[5]Lee S K, Jeon J S, Bornke F, Voll L, Cho J I, Goh C H, Jeong S W, Park Y I, Kim S J, Choi S B, Miyao A, Hirochika H, An G, Cho M H, Bhoo S H, Sonnewald U, Hahn T R. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Plant Cell Environ, 2008, 31: 1851–1863



[6]Niittyla T, Messerli G, Trevisan M, Chen J, Smith A M, Zeeman S C. A previously unknown maltose transporter essential for starch degradation in leaves. Science, 2004, 303: 87–89



[7]Sulpice R, Pyl E T, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques M C, Von Korff M, Steinhauser M C, Keurentjes J J, Guenther M, Hoehne M, Selbig J, Fernie A R, Altmann T, Stitt M. Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA, 2009, 106: 10348–10353



[8]Dumez S, Wattebled F, Dauvillee D, Delvalle D, Planchot V, Ball S G, D'Hulst C. Mutants of Arabidopsis lacking starch branching enzyme II substitute plastidial starch synthesis by cytoplasmic maltose accumulation. Plant Cell, 2006, 18: 2694–2709



[9]Labes A, Karlsson E N, Fridjonsson O H, Turner P, Hreggvidson G O, Kristjansson J K, Holst O, Schonheit P. Novel members of glycoside hydrolase family 13 derived from environmental DNA. Appl Environ Microbiol, 2008, 74: 1914–1921



[10]Jeong D H, An S, Park S, Kang H G, Park G G, Kim S R, Sim J, Kim Y O, Kim M K, Kim S R, Kim J, Shin M, Jung M, An G. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J, 2006, 45: 123–132



[11]An S, Park S, Jeong D H, Lee D Y, Kang H G, Yu J H, Hur J, Kim S R, Kim Y H, Lee M, Han S, Kim S J, Yang J, Kim E, Wi S J, Chung H S, Hong J P, Choe V, Lee H K, Choi J H, Nam J, Kim S R, Park P B, Park K Y, Kim W T, Choe S, Lee C B, An G. Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol, 2003, 133: 2040–2047



[12]Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han M J, Sung R J, Choi H S, Yu J H, Choi J H, Cho S Y, Cha S S, Kim S I, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22: 561–570



[13]Wang W, Wu C, Liu M, Liu X R, Hu G C, Si H M, Sun Z X, Liu W Z, Fu Y P. Resistance of antimicrobial peptide genes transgenic rice to bacterial blight. Rice Sci, 2011, 1: 10–16



[14]Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L, Tate J, Punta M. Pfam: the protein families database. Nucl Acids Res, 2014, 42: D222–230



[15]Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci, 1999, 8: 978–984



[16]Han Y, Sun F J, Rosales-Mendoza S, Korban S S. Three orthologs in rice, Arabidopsis, and Populus encoding starch branching enzymes (SBEs) are different from other SBE gene families in plants. Gene, 2007, 401: 123–130



[17]James M G, Denyer K, Myers A M. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol, 2003, 6: 215–222



[18]Yun M S, Umemoto T, Kawagoe Y. Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiol, 2011, 52: 1068–1082

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!