欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (12): 2128-2135.doi: 10.3724/SP.J.1006.2014.02128

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻株型相关性状的QTL分析

张玲**,李晓楠**,王伟,杨生龙,李清,王嘉宇*   

  1. 沈阳农业大学水稻研究所 / 农业部东北水稻生物学与遗传育种重点实验室, 辽宁沈阳 110866
  • 收稿日期:2014-04-16 修回日期:2014-09-16 出版日期:2014-12-12 网络出版日期:2014-10-16
  • 通讯作者: 王嘉宇, E-mail: ricewjy@126.com; Tel: 024-88487183
  • 基金资助:

    本研究由辽宁省高等学校优秀人才支持计划项目(LJQ2013075)资助。

Analysis of QTLs for Plant Type Traits in Rice (Oryza sativa)

ZHANG Ling**,LI Xiao-Nan**,WANG Wei,YANG Sheng-Long,LI Qing,WANG Jia-Yu*   

  1. Rice Research Institute, Shenyang Agricultural University / Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture, Shenyang 110866, China
  • Received:2014-04-16 Revised:2014-09-16 Published:2014-12-12 Published online:2014-10-16
  • Contact: 王嘉宇, E-mail: ricewjy@126.com; Tel: 024-88487183

摘要:

以南方籼型杂交稻恢复系泸恢99和北方粳型超级稻沈农265杂交衍生的重组自交系群体(recombinant inbred lines, RILs)为试验材料, 对株型性状(株高、穗长、分蘖和叶片性状)进行不同环境下的数量性状基因位点(quantitative trait locus, QTL)分析。共检测到39个相关QTL, 分布在水稻第1、第2、第3、第6、第7、第8和第9染色体上, LOD值介于2.50~16.90之间, 11QTL能在两年中被检测到。株型相关的QTL在染色体上成簇分布, 主要分布于第1、第6和第9染色体上, 这可能与株型性状间显著或极显著相关有关。其中, 在第9染色体上RM3700B–RM7424区间存在1QTL, 4QTL, qPH9qPL9qFLL9qSLL9, 4QTL在两年中均被检测到。此外, 进一步鉴定出5个能稳定表达的QTL, 其中, qPH8qFLW6qSLW6效应较大。这些信息综合反映了株型相关性状遗传的复杂性, 有助于我们更全面地了解和掌握株型性状的遗传基础。

关键词: 水稻, 株型性状, 不同环境, QTL分析

Abstract:

A recombinant inbred lines (RILs) derived from the across between indica restorer line Luhui 99 and super japonica cultivar Shennong 265, was used to analyze the quantitative trait loci (QTLs) for plant height, panicle length, tillers, and leaf traits in 2012 and 2013. A total of 39 QTLs were detected on chromosomes 1, 2, 3, 6, 7, 8, and 9 with LOD score ranging from 2.50 to 16.90. Eleven of them were detected in both 2012 and 2013. Moreover, QTL clusters were detected on chromosomes 1, 6 and 9, which may be related to significant or highly significant correlations between plant type traits. Among them, the QTL cluster on chromosome 9 contained four QTLs, qPH9, qPL9, qFLL9, and qSLL9 in the interval between RM3700 and RM7424, and the four QTLs were detected in both years. In addition, five major QTLs were first reported, among which three QTLs (qPH8, qFLW6, and qSLW6) had the larger effect. The results facilitate further understanding of the genetic basis for plant height, panicle length, tillers and leaf traits.

Key words: Oryza sativa L., Plant type traits, Different environments, QTL analysis

[1]陈温福, 徐正进. 水稻超高产育种理论与方法. 北京: 科学出版社, 2007. pp 1–16



Chen W F, Xu Z J. The Theories and Methods of Rice for Maximum Yield. Beijing: Science Press, 2007. pp 1–16 (in Chinese)



[2]徐正进, 林晗, 马殿荣, 王嘉宇, 徐海, 赵明辉, 陈温福. 北方粳稻穗型改良理论与技术研究及应用. 沈阳农业大学学报, 2012, 43: 650–659



Xu Z J, Lin H, Ma D R, Wang J Y, Xu H, Zhao M H, Chen W F. Research and application of the panicle type improved theory and technology in northern japonica rice. J Shenyang Agric Univ, 2012, 43: 650–659 (in Chinese with English abstract)



[3]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701–702



[4]JiaoY Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541–544



[5]Kotaro M, Mayuko I, Atsushi M, Song X J, Midori I, Kenji A, Makoto M, Hidemi K, Motoyuki A. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genet, 2010, 42: 545–549



[6]Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422: 618–621



[7]Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, ZhouY H, Chu C C, Li X G, Ren F G, Palme K, Zhao B R, Chen J F, Chen M S, Li C Y. Mutation of rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147: 1947–1959



[8]Gao Z Y, Qian Q, Liu X H, Yan M X, Feng Q, Dong G J, Liu J, Han B. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant . Plant Mol Biol, 2009, 71: 265–276



[9]Tomotsugu A, Mikihisa U, Shinji I, Atsushi H, Masahiko M, Shinjiro Y, Junko K. D14, a Strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50: 1416–1424



[10]Liu W Z, Wu C, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009, 230: 649–658



[11]Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Nitzan S, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Kotomi U, Shinsaku I, Tadao A, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCFD3-dependent degradation of D53 regulates strigolactone signaling. Nature, 2013, 504: 406–410



[12]Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Karsten M, Qian Q, Eric X, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401–405



[13]韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 66–73



Han Z L, Wei X H. Rice Germplasm Description Specifications and Data Standards. Beijing: China Agriculture Press, 2006. pp 66–73



[14]Lu B R, Cai X X, Jin X. Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Prog Nat Sci, 2009, 19: 1241–1252



[15]Zhao X Q, Wu W R. Construction of a genetic map based on ILP markers in rice. Hereditas (Beijing), 2008, 30: 225–230



[16]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E. Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181 



[17]Wang J K, Li H H, Zhang L Y, Li C H,Meng L. QTL ICI Mapping V3.0. Beijing, China: Institute of Crop Science of Chinese Academy of Agricultural Sciences, 2011. http://www.isbreeding.net/



[18]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78



[19]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13



[20]李仕贵, 何平, 王玉平, 黎汉云, 周开达, 陈英, 朱立煌. 水稻剑叶性状的遗传分析和基因定位. 作物学报, 2000, 26: 261–265



Li S G, He P, Wang Y P, Li H Y, Zhou K D, Chen Y, Zhu L H. Genetic analysis and gene mapping of the leaf traits in rice (Oryza sativa L.). Acta Agron Sin, 2000, 26: 261–265 (in Chinese with English abstract)



[21]岳兵, 薛为亚, 罗利军, 邢永忠. 水稻剑叶部分形态生理特性QTL分析以及它们与产量、产量性状的关系. 遗传学报, 2006, 33: 824-832



Yue B, Xue W Y, Luo L J, Xing Y Z. QTL Analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. J Genet Genomics, 2006, 33: 824–832 (in Chinese with English abstract)



[22]徐建军, 赵强, 赵元凤, 朱磊, 徐辰武, 顾铭洪, 韩斌, 梁国华. 利用重测序的水稻染色体片段代换系群体定位剑叶形态QTL. 中国水稻科学, 2011, 25: 483–487



Xu J J, Zhao Q, Zhao Y F, Zhu L, Xu C W, Gu M H, Han B, Liang G H. Mapping of QTLs for flag leaf shape using whole-genome re-sequenced chromosome segment substitution lines in rice. Chin J Rice Sci, 2011, 25: 483–487 (in Chinese with English abstract)



[23]王一平, 曾建平, 郭龙彪, 邢永忠, 徐才国, 梅捍卫, 应存山, 罗利军. 水稻顶部三叶与穗重的关系及其QTL分析. 中国水稻科学, 2005, 19: 13–20



Wang Y P, Zeng J P, Guo L B, Xing Y Z, Xu G C, Mei H W, Ying C S, Luo L J. QTL and correlation analysis on characters of top three leaves and panicle weight in rice (Oryza sativa L.). Chin J Rice Sci, 2005, 19: 13–20 (in Chinese with English abstract)



[24]彭茂民, 杨国华, 张菁晶, 安保光, 李阳生. 不同遗传背景下水稻剑叶形态性状的QTL分析. 中国水稻科学, 2007, 21: 247–252



Peng M M, Yang G H, Zhang J J, An B G, Li Y S. QTL Analysis for flag leaf morphological traits in rice (Oryza sativa L.) under different genetic backgrounds. Chin J Rice Sci, 2007, 21: 247–252 (in Chinese with English abstract)



[25]姜树坤, 张喜娟, 黄成, 邢亚南, 郑旭, 徐正进, 陈温福. 基于粳稻F2和F2:6群体的连锁图谱及剑叶性状QTL比较分析. 中国水稻科学, 2010, 24: 372–378



Jiang S K, Zhang X J, Huang C, Xing Y N, Zheng X, Xu Z J, Chen W F. Comparison of genetic linkage map and QTLs controlling flag leaf traits based on F2 and F2:6 populations derived from japonica rice. Chin J Rice Sci, 2010, 24: 372–378 (in Chinese with English abstract)



[26]刘进, 姚晓云, 李清, 张宇, 任春元, 王嘉宇, 徐正进. 水稻叶片性状QTL分析. 华北农学报, 2012, 27(5): 86–90



Liu J, Yao X Y, Li Q, Zhang Y, Ren C Y, Wang J Y, Xu Z J. QTL Analysis for the leaf traits in rice. Acta Agric Boreali-Sin, 2012, 27(5): 86–90 (in Chinese with English abstract)



[27]Hittalmani S, Shashidhar H E, Bagali P G, Huang N, Sidhu J S, Singh V P, Khush G S. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica, 2002, 125: 207–214



[28]方萍, 季天委, 陶勤南, 吴平. 两种供氮水平下水稻穗长QTLs的检测. 中国水稻科学, 2002, 16: 176–178



Fang P, Ji T W, Tao Q N, Wu P. Detecting QTLs for rice panicle length under two nitrogen levels. Chin J Rice Sci, 2002, 16: 176–178 (in Chinese with English abstract)



[29]杜景红, 樊叶杨, 王磊, 庄杰云. 应用剩余杂合体衍生的近等基因系分解水稻产量性状QTL. 中国水稻科学, 2008, 22: 1–7



Du J H, Fan Y Y, Wang L, Zhuang J Y. Dissection of QTLs for yield traits by using near isogenic lines derived from residual heterozygous lines in rice. Chin J Rice Sci, 2008, 22: 1–7 (in Chinese with English abstract)



[30]Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, Liang G H, Gu M H. Identification and characterization o f a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet, 2007, 115: 1093–1100



[31]Wang J Y, Nakazaki T, Chen S Q, Chen W F, Saito H, Tsukiyama T, Okumoto Y, Xu Z J, Tanisaka T. Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet, 2009, 119: 85–91



[32]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494–497

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!