[1]Awan A M, Konzak D F, Rutger J N. Mutagenic effect of sodium azide in rice. Crop Sci, 1980, 20: 663–668
[2]Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem, 1996, 237: 323–243
[3]Keegstra K, Cline K. Protein import and routing systems of chloroplasts. Plant Cell, 1999, 11: 557–570
[4]沈圣泉, 舒庆尧, 吴殿星, 陈善福, 夏英武. 白化转绿型水稻三系不育系白丰A的选育. 杂交水稻, 2005, 20(5): 10–11
Shen S Q, Shu Q Y, Wu D X, Chen S F, Xia Y W. Breeding of new rice CMS line Baifeng A with a green-revertible albino leaf color marker. Hybrid Rice, 2005, 20(5): 10–11 (in Chinese with English abstract)
[5]贺治洲, 尹明, 谢振宇, 王悦, 沈建凯, 李莉萍. 水稻新型黄化转绿叶色突变体的遗传分析与育种利用. 热带作物学报, 2013, 34(11): 2145–2149
He Z Z, Yin M, Xie Z Y, Wang Y, Shen J K, Li L P. Genetic analysis and breeding application of a novel rice mutant with virescent yellow leaves. Chin J Trop Crops, 2013, 34: 2145–2149 (in Chinese with English abstract)
[6]崔海瑞, 夏英武, 高明尉. 温度对水稻突变体W1叶色及叶绿素生物合成的影响. 核农学报, 2001, 15: 269–273
Cui H R, Xia Y W, Gao M W. Effects of temperature on leaf color and chlorophyll biosynthesis of rice mutant W1. Acta Agric Nucl Sin, 2001, 15: 269–273 (in Chinese with English abstract)
[7]舒庆尧, 刘贵付, 夏英武. 温敏水稻叶色突变体的研究. 核农学报, 1996, 10: 6–10
Shu Q Y, Liu G F, Xia Y W. Temperature-sensitive leaf color mutation in rice (Oryza sativa L.). Acta Agric Nucl Sin, 1996, 10: 6–10 (in Chinese with English abstract)
[8]吴殿星, 舒庆尧, 夏英武, 郑涛, 刘贵付. 一个新的水稻转绿型白化突变系W25的叶色特征及遗传. 浙江农业学报, 1996, 8: 372–374
Wu D X, Shu Q Y, Xia Y W, Zheng T, Liu G F. Leaf color character and genetics of a new greenable albino mutation line W25 of rice (Oryza sativa). Acta Agric Zhejiangensis, 1996, 8: 372–374 (in Chinese with English abstract)
[9]Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H, Wan J M. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159: 227–238
[10]郭涛, 黄永相, 罗文龙, 黄宣, 王慧, 陈志强, 刘永柱. 水稻叶色白化转绿及多分蘖矮秆突变体hfa-1的基因表达谱分析. 作物学报, 2013, 39: 2123–2134
Guo T, Huang Y X, Luo W L, Huang X, Wang H, Chen Z Q, Liu Y Z. Gene differential expression of a green-revertible albino and high-tillering dwarf mutant hfa-1 by using rice microarray. Acta Agron Sin, 2013, 39: 2123–2134 (in Chinese with English abstract)
[11]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Iba K, Paek N C. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388–401
[12]郭士伟, 王永飞, 马三梅, 李霞, 高东迎. 一个水稻叶片白化转绿叶突变体的遗传分析和精细定位. 中国水稻科学, 2011, 25: 95–98
Guo S W, Wang Y F, Ma S M, Li X, Gao D Y. Genetic analysis and fine mapping of a green-revertible albino leaf mutant in rice. Chin J Rice Sci, 2011, 25: 95–98 (in Chinese with English abstract)
[13]Sang X C, Fang L K, Vanichpakorn Y, Ling Y H, Du P, Zhao F M, Yang Z L, He G H. Physiological character and molecular mapping of leaf-color mutant wyv1 in rice (Oryza sativa L.). Genes Genomics, 2010, 32: 123–128
[14]张向前, 李晓燕, 朱海涛, 王涛, 解新明. 水稻阶段性返白突变体的鉴定和候选基因分析. 科学通报, 2010, 55: 2296–2301
Zhang X Q, Li X Y, Zhu H T, Wang T, Xie X M. Identification and candidate gene analysis of stage green-revertible albino mutant in rice (Oryza sativa L.). Chin Sci Bull, 2010, 55: 2296–2301 (in Chinese with English abstract)
[15]Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J, 2011, 68: 1039–1050
[16]Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52: 512–527
[17]郭涛, 黄永相, 黄宣, 刘永柱, 张建国, 陈志强, 王慧. 水稻叶色白化转绿及多分蘖矮秆基因hw-1(t)的图位克隆. 作物学报, 2012, 38: 1397–1406
Guo T, Huang Y X, Huang X, Liu Y Z, Zhang J G, Chen Z Q, Wang H. Map-based cloning of a green-revertible albino and high-tillering dwarf gene hw-1(t) in rice. Acta Agron Sin, 2012, 38: 1397–1406 (in Chinese with English abstract)
[18]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[19]Dong H, Fei G L, Wu C Y, Fu Q W, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867–1880
[20]Li J Q, Wang Y H, Chai J T, Wang L H, Wang C M, Long W H, Wang D, Wang Y L, Zheng M, Peng C, Niu M, Wan J M. Green-revertible chlorina 1 (grc1) is required for the biosynthesis of chlorophyll and the early development of chloroplasts in rice. J Plant Biol, 2013, 56: 326–335
[21]Wellburn. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans, 1983, 11: 591–592
[22]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815–829
[23]王平荣, 王兵, 孙小秋, 孙昌辉, 万春美, 马晓智, 邓晓建. 水稻白化转绿基因gra75的精细定位和生理特性分析. 中国农业科学, 2013, 46: 225–232
Wang P R, Wang B, Sun X Q, Sun C H, Wan C M, Ma X Z, Deng X J. Fine mapping and physiological characteristics of a green-revertible albino gene gra75 in rice. Sci Agric Sin, 2013, 46: 225–232 (in Chinese with English abstract)
[24]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472
[25]Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol, 2005, 46: 467–473
[26]Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337
[27]Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S, Rüdiger W. Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Planta, 2003, 216: 475–483
[28]Nott A, Jung H S, Koussevitzky S, Chory J. Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol, 2006, 57: 739–759
[29]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906
[30]Chi W, Mao J, Li Q N, Ji D L, Zou M L, Lu C M, Zhang L X. Interaction of the pentatricopeptide-repeat protein DELAYED GREENING 1 with sigma factor SIG6 in the regulation of chloroplast gene expression in Arabidopsis cotyledons. Plant J, 2010, 64: 14–25
[31]Huang C, Yu Q B, Lü R H, Yin Q Q, Chen G Y, Xu L, Yang Z N. The reduced plastid-encoded polymerase-dependent plastid gene expression leads to the delayed greening of the Arabidopsis fln2 mutant. PLoS One, 2013, 8(9): e73092. doi: 10.1371/journal. pone 0073092 |