欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1205-1211.doi: 10.3724/SP.J.1006.2018.01205

• 耕作栽培·生理生化 • 上一篇    下一篇

开花期干旱胁迫对鲜食糯玉米产量和品质的影响

施龙建(),文章荣,张世博,王珏,陆卫平,陆大雷()   

  1. 扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2018-02-04 接受日期:2018-06-12 出版日期:2018-08-10 网络出版日期:2018-06-19
  • 通讯作者: 陆大雷
  • 基金资助:
    国家自然科学基金项目(31471436);国家自然科学基金项目(31771709);国家自然科学基金项目(31271640);国家重点研发计划项目(2016YFD0300109);江苏省现代农业产业技术体系(SXGC[2017]307);江苏省青蓝工程和江苏省高校优势学科建设工程项目

Effects of Water Deficit at Flowering Stage on Yield and Quality of Fresh Waxy Maize

Long-Jian SHI(),Zhang-Rong WEN,Shi-Bo ZHANG,Jue WANG,Wei-Ping LU,Da-Lei LU()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-02-04 Accepted:2018-06-12 Published:2018-08-10 Published online:2018-06-19
  • Contact: Da-Lei LU
  • Supported by:
    the National Natural Science Foundation of China(31471436);the National Natural Science Foundation of China(31771709);the National Natural Science Foundation of China(31271640);the National Key Research and Development Program of China(2016YFD0300109);the Technology System of Modern Agriculture Industry in Jiangsu Province(SXGC[2017]307);the Qing Lan Project of Jiangsu Province, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

摘要:

为探明开花期(抽雄吐丝期)干旱胁迫对鲜食糯玉米(吐丝后23 d采收)产量和品质的影响, 以苏玉糯5号和渝糯7号为试材, 采用负水头供水控水盆栽装置控制土壤含水量, 设置开花期正常供水(土壤相对含水量80%)和干旱胁迫(土壤相对含水量60%) 2个处理, 研究干旱胁迫对鲜食糯玉米产量(鲜果穗和鲜籽粒)、籽粒组分、糊化和热力学特性的影响。结果表明, 开花期干旱胁迫减少籽粒数量、降低籽粒重量、缩小籽粒体积, 导致鲜果穗和鲜籽粒产量损失。开花期干旱胁迫下鲜食期籽粒淀粉含量升高, 但对于蛋白质含量渝糯7号降低, 苏玉糯5号变化不显著。蛋白质组分中, 对球蛋白含量影响不显著, 清蛋白、谷蛋白和醇溶蛋白均显著降低。开花期干旱胁迫显著降低淀粉粒平均粒径。碘结合力2015年度显著下降, 2014年度受干旱影响不显著。开花期干旱胁迫下籽粒峰值黏度、谷值黏度和终值黏度在苏玉糯5号中降低, 在渝糯7号中升高。开花期干旱胁迫下两品种峰值温度降低, 回生热焓值和回生值升高, 而热焓值仅渝糯7号在2014年度升高。总之, 开花期干旱降低糯玉米鲜果穗和鲜籽粒产量, 增加籽粒淀粉含量, 降低籽粒蛋白质含量、淀粉粒径和支链淀粉中长链比例, 进而使籽粒回生增加, 但糊化黏度两品种表现不同(渝糯7号升高, 苏玉糯5号下降)。

关键词: 鲜食糯玉米, 开花期干旱, 产量, 品质

Abstract:

In order to clarify the influence of water deficit at flowering stage (tasseling silking stage) on yield and quality of fresh waxy maize (harvest at 23 d after silking), the fresh ear/grain yield and kernel components, pasting and thermal properties were measured using Suyunuo 5 and Yunuo 7. The soil moisture content was controlled by negative-pressure water supply and controlling pot device, and the relative soil moisture content for control and drought treatments was 80% and 60%, respectively. The drought at flowering stage decreased grain number, weight and volume, leading to the yield loss of fresh ear and grain. Under water deficit condition, grain starch content was increased, while protein content was increased in Yunuo 7 and unchanged in Suyunuo 5. For protein components, globulin contents was not affected by drought, while albumin, zein and glutenin contents were decreased when plants suffered water deficit at flowering stage. The starch granule size was reduced by drought for both varieties in both years, while starch iodine binding capacity for both varieties was decreased in 2015 and not affected in 2014 by drought. The peak, trough and final viscosities of grains were increased in Yunuo 7 and decreased in Suyunuo 5. Under drought condition, the grain peak gelatinization temperatures were decreased, retrogradation enthalpy and percentage were increased, while gelatinization enthalpy was only increased in Yunuo 7 in 2014. In conclusion, drought at flowering stage decreases fresh ear/grain yield, increases grain starch content, decreases protein content, starch granule size and the proportion of long chains in amylopectin, and increases the grain retrograde, while viscosities in response to water deficit are dependent on varieties (increases in Yunuo 7 and decreases in Suyunuo 5).

Key words: fresh waxy maize, water deficit at flowering stage, yield, quality

表1

开花期干旱对鲜食糯玉米产量的影响"

品种
Variety
处理
Treatment
鲜籽粒重Fresh grain weight (mg) 干籽粒重
Dry grain weight (mg)
鲜籽粒体积
Fresh grain volume (μL)
每穗粒数
Grain
number
鲜果穗产量
Fresh ear yield
(g plant-1)
鲜籽粒产量
Fresh grain yield
(g plant-1)
籽粒含水率
Grain moisture content (%)
2014
苏玉糯5号
Suyunuo 5
对照Control 241.4 d 97.8 d 230.0 c 490.0 ab 158.0 c 118.2 cd 59.5 c
干旱Drought 241.6 d 94.6 de 216.7 d 438.7 bc 142.9 d 105.9 d 60.8 b
渝糯7号
Yunuo 7
对照Control 276.4 b 97.1 d 260.0 b 490.0 ab 178.9 b 135.5 b 64.9 a
干旱Drought 258.4 c 90.3 e 250.0 b 443.3 bc 159.6 c 114.6 cd 65.1 a
2015
苏玉糯5号
Suyunuo 5
对照Control 285.4 b 122.7 b 260.0 b 428.7 c 160.6 c 122.3 bc 57.0 e
干旱Drought 249.9 cd 108.0 c 226.7 cd 345.3 d 136.2 d 86.3 e 56.8 e
渝糯7号
Yunuo 7
对照Control 322.1 a 133.7 a 273.3 a 521.3 a 230.7 a 167.9 a 58.5 d
干旱Drought 279.7 b 111.9 c 253.3 b 455.3 bc 171.8 bc 127.3 bc 60.0 c

表2

开花期干旱对籽粒淀粉和蛋白质组分含量的影响"

品种
Variety
处理
Treatment
清蛋白
Albumin
球蛋白Globulin 谷蛋白
Zein
醇溶蛋白
Glutenin
蛋白质
Protein
淀粉
Starch
2014
苏玉糯5号
Suyunuo 5
对照Control 12.9 a 4.8 ab 25.9 a 21.0 b 90.7 a 550.9 d
干旱Drought 10.1 d 5.4 a 21.3 b 18.2 c 89.9 a 621.9 b
渝糯7号
Yunuo 7
对照Control 11.5 b 4.5 b 18.7 cd 24.5 a 79.0 b 571.8 cd
干旱Drought 10.4 d 4.7 ab 15.7 e 23.8 a 67.9 e 646.7 a
2015
苏玉糯5号
Suyunuo 5
对照Control 12.7 a 1.8 c 16.3 de 12.5 e 77.6 bc 559.5 d
干旱Drought 12.6 a 1.9 c 14.2 ef 11.1 ef 76.6 cd 581.8 cd
渝糯7号
Yunuo 7
对照Control 12.7 a 2.1 c 19.8 bc 14.1 d 75.3 d 562.5 cd
干旱Drought 11.0 c 2.1 c 12.8 f 10.4 f 68.8 e 604.4 bc

图1

开花期干旱对鲜食糯玉米淀粉粒体积分布的影响"

图2

开花期干旱对鲜食糯玉米籽粒淀粉最大吸收波长和碘结合力的影响"

表3

开花期干旱对鲜食糯玉米籽粒糊化特性的影响"

品种
Variety
处理
Treatment
峰值黏度
PV (cP)
谷值黏度
TV (cP)
崩解值
BD (cP)
终值黏度
FV (cP)
回复值
SB (cP)
糊化温度
Ptemp (°C)
2014
苏玉糯5号
Suyunuo 5
对照Control 569 e 555 e 14 e 829 e 275 b 77.3 bc
干旱Drought 482 f 472 f 10 e 672 f 201 cd 78.1 ab
渝糯7号
Yunuo 7
对照Control 769 d 708 d 61 d 975 cd 267 b 76.9 c
干旱Drought 1188 b 982 a 207 b 1438 a 457 a 75.0 d
2015
苏玉糯5号
Suyunuo 5
对照Control 764 d 711 d 53 d 938 d 227 c 77.9 ab
干旱Drought 744 d 687 d 57 d 864 e 177 d 78.8 a
渝糯7号
Yunuo 7
对照Control 913 c 809 c 104 c 1007 c 198 cd 78.7 a
干旱Drought 1306 a 923 b 383 a 1112 b 189 d 77.5 bc

表4

开花期干旱胁迫对鲜食糯玉米籽粒热力学特性的影响"

品种
Variety
处理
Treatment
热焓值
ΔHgel (J g-1)
起始温度
To (°C)
峰值温度
Tp (°C)
终值温度
Tc (°C)
回生热焓值
ΔHret (J g-1)
回生值
%R (%)
2014
苏玉糯5号
Suyunuo 5
对照Control 9.6 ab 73.4 a 78.1 a 84.5 a 2.5 b 26.5 c
干旱Drought 9.6 ab 73.1 b 77.6 b 83.6 bc 3.2 a 33.9 a
渝糯7号
Yunuo 7
对照Control 8.8 b 72.9 c 77.6 b 84.4 a 1.8 c 20.6 d
干旱Drought 10.3 a 72.8 c 77.2 c 83.3 c 3.1 ab 29.9 bc
2015
苏玉糯5号
Suyunuo 5
对照Control 10.0 a 72.8 c 77.9 a 84.1 ab 3.3 a 32.7 ab
干旱Drought 10.3 a 72.4 d 77.0 c 83.8 bc 3.5 a 34.5 a
渝糯7号
Yunuo 7
对照Control 9.6 ab 71.2 e 75.9 d 82.1 d 3.1 ab 32.2 ab
干旱Drought 9.4 ab 71.1 e 75.6 e 82.4 d 3.3 a 35.3 a
[1] Service R F . Green energy. The promise of drought-tolerant corn. Science, 2009,326:517
doi: 10.1126/science.326_517
[2] Cooper M, Gho C, Leafgren R, Tang T, Messina C . Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J Exp Bot, 2014,65:6191-204
doi: 10.1093/jxb/eru064 pmid: 24596174
[3] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞 . 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015,23:383-391
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P . Effect of drought on ear development and yield of maize. Chin J Eco-Agric, 2015,23:383-391 (in Chinese with English abstract)
[4] Begcy K, Walia H . Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Sci, 2015,240:109-119
doi: 10.1016/j.plantsci.2015.08.024
[5] Li C, Li C Y, Zhang R Q, Liang W, Kang X L, Jia Y, Liao Y C . Effects of drought on the morphological and physicochemical characteristics of starch granules in different elite wheat varieties. J Cereal Sci, 2015,66:66-73
doi: 10.1016/j.jcs.2015.10.005
[6] Gous P W, Hasjim J, Franckowiak J, Fox G P, Gilbert R G . Barley genotype expressing “stay-green”-like characteristics maintains starch quality of the grain during water stress condition. J Cereal Sci, 2013,58:414-419
doi: 10.1016/j.jcs.2013.08.002
[7] Yi B, Zhou Y F, Gao M Y, Zhang Z, Han Y, Yang G D, Xu W J, Huang R D . Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. J Integr Agric, 2014,13:2399-2406
doi: 10.1016/S2095-3119(13)60694-2
[8] Haider Z, Farooq U, Naseem I, Zia S, Alamgeer M . Impact of drought stress on some grain quality traits in rice (Oryza sativa). Agric Res, 2015,4:132-138
doi: 10.1007/s40003-015-0148-8
[9] Tester R F, Karkalas J . The effects of environmental conditions on the structural features and physicochemical properties of starches. Starch/Stärke, 2001,53:513-519
doi: 10.1002/1521-379X(200110)53:10<513::AID-STAR513>3.0.CO;2-5
[10] Wang Y X, Frei M . Stressed food: the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ, 2011,141:271-286
doi: 10.1016/j.agee.2011.03.017
[11] Thitisaksakul M, Jimenez R C, Arias M C, Beckles D M . Effects of environmental factors on cereal starch biosynthesis and composition. J Cereal Sci, 2012,56:67-80
doi: 10.1016/j.jcs.2012.04.002
[12] Beckles D M, Thitisaksakul M . How environmental stress affects starch composition and functionality in cereal endosperm . Starch/Stärke, 2014,66:58-71
doi: 10.1002/star.201300212
[13] Jagadish K S V, Kadam N N, Xiao G, Melgar R J, Bahuguna R N, Quinones C, Tamilselvan A, Prasad P V V . Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv Agron, 2014,127:111-156
doi: 10.1016/B978-0-12-800131-8.00003-0
[14] Patindol J A, Siebenmorgen T J, Wang Y J . Impact of environmental factors on rice starch structure: A review. Starch/Stärke, 2015,67:42-54
doi: 10.1002/star.201400174
[15] Erbs M, Manderscheid R, Huther L, Schenderlein A, Wieser H, Danicke S, Weigel H J . Free-air CO2 enrichment modifies maize quality only under drought stress. Agron Sustain Dev, 2015,35:203-212
doi: 10.1007/s13593-014-0226-5
[16] Lu D, Cai X, Zhao J, Shen X, Lu W . Effects of drought after pollination on grain yield and quality of fresh waxy maize. J Sci Food Agric, 2015,95:210-215
doi: 10.1002/jsfa.6709 pmid: 24771545
[17] Hansen J, Moller I . Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem, 1975,68:87-94
doi: 10.1016/0003-2697(75)90682-X
[18] AACC. Approved Methods of the American Association of Cereal Chemists, Method 46 (1990) 10-01, AACCI, St Paul, MN
[19] 张智猛, 戴良香, 胡昌浩, 董树亭, 王空军 . 氮素对不同类型玉米籽粒氨基酸、蛋白质含量及其组分变化的影响. 西北植物学报, 2015,25:1415-1420
doi: 10.3321/j.issn:1000-4025.2005.07.024
Zhang Z M, Dai L X, Hu C H, Dong S T, Wang K J . Effect of nitrogen on amino acid and protein and protein component contents in the grains of different types of maize. Acta Bot Boreali-Occident Sin, 2005,25:1415-1420 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-4025.2005.07.024
[20] Lu D L, Shen X, Cai X M, Yan F B, Lu W P, Shi Y C . Effects of heat stress during grain filling on the structure and thermal properties of waxy maize starch. Food Chem, 2014,143:313-318
doi: 10.1016/j.foodchem.2013.07.089
[21] Lu D L, Lu W P . Effects of protein removal on the physicochemical properties of waxy maize flours. Starch/Stärke, 2012,64:874-881
doi: 10.1002/star.201200038
[22] Robins J S, Domingo C E . Some effects of severe soil moisture deficits at specific growth stages in corn. Agron J, 1953,45:618-621
doi: 10.2134/agronj1953.00021962004500120009x
[23] 刘永红, 何文铸, 杨勤, 柯国华, 高强 . 花期干旱对玉米籽粒发育的影响. 核农学报, 2007,21:181-185
doi: 10.3969/j.issn.1000-8551.2007.02.019
Liu Y H, He W Z, Yang Q, Ke G H, Gao Q . Effect of drought on grain growth at maize flowering stage. J Nucl Agric Sci, 2007,21:181-185 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-8551.2007.02.019
[24] 刘萍, 杜庆平, 徐月明, 王祥菊 . 糯玉米果穗不同计产方法对产量评价的影响. 江苏农业科学, 2013,41(4):85-87
doi: 10.3969/j.issn.1002-1302.2013.04.029
Liu P, Du Q P, Xu Y M, Wang X J . Effects of different ear yield calculating methods on yield evaluation in waxy corn. Jiangsu Agric Sci, 2013,41(4):85-87 (in Chinese)
doi: 10.3969/j.issn.1002-1302.2013.04.029
[25] Liu L M, Klocke N, Yan S P, Rogers D, Schlegel A, Lamm F, Chang S I, Wang D . Impact of deficit irrigation on maize physical and chemical properties and ethanol yield. Cereal Chem, 2013,90:453-462
doi: 10.1094/CCHEM-07-12-0079-R
[26] Zhang W, Gu J, Wang Z, Wei C, Yang J, Zhang J . Comparison of structural and functional properties of wheat starch under different soil drought conditions. Sci Rep, 2017,7(1):12312
doi: 10.1038/s41598-017-10802-3
[27] Lu D, Cai X, Lu W . Effects of water deficit during grain filling on the physicochemical properties of waxy maize starch. Starch/ Stärke, 2015,67:692-700
doi: 10.1002/star.v67.7-8
[28] Lindeboom N, Chang P R, Tyler R T . Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch/Stärke, 2004,56:89-99
doi: 10.1002/(ISSN)1521-379X
[29] Yu X, Li B, Wang L, Chen X, Wang W, Gu Y, Wang Z, Xiong F . Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. J Sci Food Agric, 2016,96:2746-2754.
doi: 10.1002/jsfa.2016.96.issue-8
[30] Singh S, Singh G, Singh P, Singh N . Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chem, 2008,108:130-139
doi: 10.1016/j.foodchem.2007.10.054
[31] Zhang T, Wang Z, Yin Y, Cai R, Yan S, Li W . Starch content and granule size distribution in grains of wheat in relation to post-anthesis water deficits. J Agron Crop Sci, 2010,196:1-8
doi: 10.1111/jac.2009.196.issue-1
[32] 陆大雷, 孙旭利, 王鑫, 闫发宝, 陆卫平 . 灌浆结实期水分胁迫对糯玉米粉理化特性的影响. 中国农业科学, 2013,46:30-36
Lu D L, Sun X L, Wang X, Yan F B, Lu W P . Effects of water stress during grain filling on physicochemical properties of waxy maize flour. Sci Agric Sin, 2013,46:30-36 (in Chinese with English abstract)
[33] Gunaratne A, Ratnayaka U K, Sirisena N, Ratnayaka J, Kong X, Arachchi L V, Corke H . Effect of soil moisture stress from flowering to grain maturity on functional properties of Sri Lankan rice flour. Starch/Stärke, 2011,63:283-290
doi: 10.1002/star.v63.5
[34] Perera C, Hoover R . Influence of hydroxypropylation on retrogradation properties of native, defatted and heatmoisture treated potato starches. Food Chem, 1999,64:361-375
doi: 10.1016/S0308-8146(98)00130-7
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!