欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 289-296.doi: 10.3724/SP.J.1006.2019.01105

• 耕作栽培·生理生化 • 上一篇    下一篇

不同种类生物炭对植烟土壤微生物及根茎病害发生的影响

李成江1,李大肥2,周桂夙1,许龙2,徐天养2,赵正雄1,*()   

  1. 1云南农业大学烟草学院, 云南昆明 650201
    2 云南省烟草公司文山州公司, 云南文山663000
  • 收稿日期:2018-05-30 接受日期:2018-10-08 出版日期:2019-02-12 网络出版日期:2018-11-01
  • 通讯作者: 赵正雄
  • 基金资助:
    本研究由云南省烟草公司科技计划项目资助(2016YN14)

Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco

Cheng-Jiang LI1,Da-Fei LI2,Gui-Su ZHOU1,Long XU2,Tian-Yang XU2,Zheng-Xiong ZHAO1,*()   

  1. 1 College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2 Wenshan Tobacco Company, Yunnan Tobacco Company, Wenshan 663000, Yunnan, China
  • Received:2018-05-30 Accepted:2018-10-08 Published:2019-02-12 Published online:2018-11-01
  • Contact: Zheng-Xiong ZHAO
  • Supported by:
    This study was supported by the Science and Technology Project of Yunnan Tobacco Company(2016YN14)

摘要:

采用田间试验研究了稻壳炭、木屑炭对烤烟根区土壤微生物、根茎病害发生以及烟叶产量的影响。结果表明, 生物炭施用明显影响着烤烟根区土壤微生物数量及其对碳源的利用, 进而影响着青枯病、黑胫病的发生情况和烟叶的产量、产值, 但其效果因生物炭种类而异。木屑炭处理烤烟旺长期细菌和采烤前放线菌的数量明显比对照增加了11.7%和12.8%, 而稻壳炭处理旺长和初烤时的真菌数量显著增加。植烟土壤中青枯菌和黑胫病菌的数量及其占微生物总量的百分比也以施用生物炭处理显著低于对照, 而烤烟旺长期根区微生物对碳源的利用能力则相反; 到烟叶采烤前, 根区微生物对酚酸类和胺类的利用以生物炭处理相对最低; 上述情况以木屑炭处理较稻壳炭处理更为明显。与对照相比, 木屑炭处理青枯病的发病率和病情指数降低了24.3%和33.3%, 黑胫病的发病率和病情指数降低了23.9%和14.9%, 产量和产值增加了4.7%和21.1%; 稻壳炭处理青枯病发病率和病情指数降低了18.1%和23.9%, 黑胫病的发病率和病情指数降低了15.9%和6.0%, 产量和产值增加了2.2%和12.0%。综合而言, 施用生物炭能较好地改善土壤微生物状况及其对碳源的利用, 减少青枯病和黑胫病的发生, 增加烟叶的产量和产值; 其中以木屑炭处理效果更佳。

关键词: 生物炭, 烤烟, 土壤微生物, 青枯病, 黑胫病, 产量, 产值

Abstract:

A field experiment was carried out to study effects of rice husk biochar and wood biochar application respectively on rhizosphere microorganisms, rhizome diseases occurrence, and leaf yield of flue-cured tobacco. The application of biochar significantly affected the amount of rhizosphere microorganisms and the use of carbon sources of flue-cured tobacco. In turn, as well as the occurrences of granville wilt and tobacco black shank, also the yield and output value of tobacco leaf, which varied with the types of biochar. The treatment of wood biochar significantly increased the number of bacteria at vigorous growth stage and actinomycete at mature stage in flue-cured tobacco by 11.7% and 12.8% respectively, while the treatment of rice husk biochar significantly increased the number of fungus in both stages. Compared with the control, the application of biochar significantly reduced the number of Ralstonia solanacearm and Phytophthora parasitica var. nicotianac and the percentage to total microorganism. But rhizosphere microorganisms of flue-cured tobacco had the opposite effect on the carbon use ability in vigorous growing stage; before mature stage, phenolic acids and amines used by rhizosphere microorganisms were the lowest. The effect above, was more obvious in treatment of wood biochar than in treatment of rice husk biochar. Compared with control, the treatment of wood biochar decreased the incidence and disease index of granville wilt by 24.3% and 33.3%, and those of tobacco black shank decreased by 23.9% and 14.9%, while increased the output and output value by 4.7% and 21.1%. In rice husk biochar treatment, the incidence and disease index of granville wilt decreased by 18.1% and 23.9%, the incidence and disease index of tobacco black shank decreased by 15.9% and 6.0%, and the output and output value increased by 2.2% and 12.0%. In summary, the application of biochar can significantly impactive the situations of rhizosphere microorganisms of flue-cured tobacco and the utilization of different types of biochar, reducing the occurrence of granville wilt and black shank, and increasing the yield and output value of tobacco leaf. The effect of wood biochar is better.

Key words: biochar, flue-cured tobacco, root-zone microorganisms, granville wilt, tobacco black shank, yield, output value

表1

供试生物炭基本性质"

生物炭
Biochar
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
全磷
Total P
(g kg-1)
全钾
Total K
(g kg-1)
电导率
Electric conductivity
(mS cm-1)
稻壳炭 Rice husk biochar 9.46 17.33 0.28 28.32 39.08 4.79
木屑炭 Wood biochar 6.35 51.60 0.35 16.63 11.12 6.03

表2

根区土壤微生物数量"

测定项目
Tested assay
处理
Treatment
旺长期
Vigorous growing stage
采烤前
Mature stage
细菌
Bacteria (×106 cfu g-1)
CK 5.28±0.23 b 3.17±2.15 a
RB 5.45±0.98 b 3.49±2.23 a
WB 5.90±0.49 a 3.52±2.17 a
真菌
Fungi (×104 cfu g-1)
CK 3.75±1.90 b 6.11±2.17 b
RB 5.00±2.43 a 10.38±2.19 a
WB 3.97±2.55 b 8.17±2.56 b
放线菌
Actinomycets (×105 cfu g-1)
CK 15.58±1.90 a 17.55±1.00 b
RB 15.90±1.12 a 18.03±1.28 b
WB 15.98±0.97 a 19.80±1.59 a
微生物总量
Total microorganisms amount (×106 cfu g-1)
CK 6.85±0.21 b 5.02±0.15 b
RB 7.05±0.21 ab 5.33±0.15 a
WB 7.49±0.21 a 5.62±0.15 a

图1

不同处理根区土壤微生物平均颜色变化率 CK: 不施生物炭; RB: 稻壳炭处理; WB: 木屑炭处理。"

表3

不同处理根区土壤微生物对六类碳源的利用"

测定时期
Measurement period
处理
Treatment
碳水化合物
Carbohydrate
氨基酸类
Amino acid
聚合物
Polymer
酚酸类
Phenothiazine
胺类
Propylamine
羧酸类
RCOOH
旺长期
Vigorous growing stage
CK 0.41±0.07 b 0.32±0.04 b 0.38±0.06 b 0.10±0.01 c 0.11±0.01 c 0.38±0.10 b
RB 0.43±0.06 b 0.55±0.02 b 0.40±0.04 b 0.22±0.02 b 0.33±0.03 b 0.40±0.04 ab
WB 0.69±0.02 a 0.99±0.06 a 0.89±0.17 a 0.45±0.05 a 0.53±0.04 a 0.55±0.12 a
采烤前
Mature stage
CK 0.41±0.03 b 0.57±0.13 b 0.32±0.10 b 0.26±0.10 a 0.55±0.03 b 0.70±0.04 a
RB 0.55±0.14 ab 0.77±0.05 a 0.67± 0.04 a 0.16±0.08 a 0.43±0.04 b 0.71±0.04 a
WB 0.62±0.10 a 0.84±0.02 a 0.79± 0.03 a 0.12±0.03 a 0.35±0.05 a 0.60±0.08 a

图2

不同处理根区土壤青枯菌、黑胫病菌的数量及占微生物的百分比 不同字母表示处理间差异显著性(P<0.05)。CK: 不施生物炭; RB: 稻壳炭处理; WB: 木屑炭处理。"

表4

生物质炭对烤烟主要病害的影响"

处理
Treatment
项目
Item
旺长期 Vigorous growing stage 采烤前 Mature stage
青枯病
Granvillel wilt
黑胫病
Tobacco black shank
青枯病
Granville wilt
黑胫病
Tobacco black shank
发病率
Incidence rate (%)
CK 3.37 a 1.76 a 4.67 a 2.63 a
RB 2.76 b 1.48 b 3.53 b 2.24 b
WB 2.55 c 1.34 c 3.50 b 2.20 b
病情指数
Disease index (%)
CK 2.34 a 1.34 a 4.36 a 2.34 a
RB 1.78 b 1.26 a 2.98 b 1.52 b
WB 1.56 c 1.14 c 2.73 b 1.49 b

表5

生物炭对烤烟经济性状的影响"

处理
Treatment
产量
Yield (kg hm-2)
产值
Output value (yuan hm-2)
上等烟比例
Proportion of high grade tobacco leaf (%)
CK 2092.5 b 48576.0 b 51.1 a
RB 2139.0 a 54415.5 a 53.1 a
WB 2190.5 a 58821.0 a 54.3 a
[1] 周启星 . 健康土壤学: 土壤健康质量与农产品安全. 北京: 科学出版社, 2005. pp 149-162.
Zhou Q X. Science of Health Soil: Quality of Health. Soil and Safety of Agricultural Product. Beijing: Science Press, 2005. pp 149-162(in Chinese).
[2] 胡可, 李华兴, 卢维盛, 刘远金, 王利宾 . 生物有机肥对土壤微生物活性的影响. 中国生态农业学报, 2010,18:303-306.
doi: 10.3724/SP.J.1011.2010.00303
Hu K, Li H X, Lu W S, Liu Y J, Wang L B . Effect of microbial organic fertilizer application on soil microbial activity. Chin J Eco-Agric, 2010,18:303-306 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2010.00303
[3] 刘晓燕, 金继运, 任天志, 何萍 . 中国有机肥料养分资源潜力和环境风险分析. 应用生态学报, 2010,21:2092-2098.
Liu X Y, Jin J Y, Ren T Z, He P . Potential of organic manures nutrient resources and their environmental risk in China. Chin J Appl Ecol, 2010,21:2092-2098 (in Chinese with English abstract).
[4] Ren L X, Su S M, Yang X M, Xu Y C, Huang Q W, Shen Q R . Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biol & Biochem, 2008,40:834-844.
doi: 10.1016/j.soilbio.2007.11.003
[5] 王璐, 赵保卫, 许仁智, 李烨炜 . 生物炭的基本特性及其应用领域的研究进展. 广东化工, 2016,43(7):93-94.
doi: 10.3969/j.issn.1007-1865.2016.07.043
Wang L, Zhao B W, Xu R Z, Li Y W . Research on the basic characteristic and application fields of biochar. Guangdong Chem Ind, 2016,43(7):93-94 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-1865.2016.07.043
[6] Thassitou P K, Arvanitoyannis I S . Bioremediation: a novel approach to food waste management. Trends in Food Sci & Technol, 2001,12(5/6):185-196.
doi: 10.1016/S0924-2244(01)00081-4
[7] 陈温福, 张伟明, 孟军 . 农用生物炭研究进展与前景. 中国农业科学, 2013,46:3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003
Chen W F, Zhang W M, Meng J . Advances and prospects in research of biochar utilization in agriculture. Sci Agric Sin, 2013,46:3324-3333 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2013.16.003
[8] 万惠霞, 冯小虎, 张文梅, 裴建锋, 焦永吉, 李铭, 蒋士君 . 生态炭肥防治烟草青枯病及其土壤微生态学机理分析. 江西农业学报, 2015, ( 6):92-97.
Wan H X, Feng X H, Zhang W M, Pei J F, Jiao Y J, Li M, Jiang S J . Control effect of ecobio-char on tobacco bacterial wilt and its soil microecological mechanism. Acta Agric Jiangxi, 2015, ( 6):92-97 (in Chinese with English abstract).
[9] 管恩娜 . 生物质炭对土壤理化性质、烤烟生长及烟草黑胫病的影响. 中国农业科学院硕士学位论文, 北京, 2016.
Guan N N . Effects of Biochar on Soil Physicochemical Properties Tobacco Growth and Tobacco Blackshank. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[10] 叶协锋, 于晓娜, 李志鹏, 周涵君, 张晓帆, 宋显峰, 付仲毅, 凌天孝, 郑好 . 两种生物炭对植烟土壤生物学特性的影响. 中国烟草学报, 2016,22(6):78-84.
doi: 10.16472/j.chinatobacco.2015.519
Ye X F, Yu X N, Li Z P, Zhou H J, Zhang X F, Song X F, Fu Z Y, Ling X T, Zheng H . Effect of two biochars on biological characteristics of tobacco growing soil. Acta Tab Sin, 2016,22(6):78-84 (in Chinese with English abstract).
doi: 10.16472/j.chinatobacco.2015.519
[11] 王成己, 陈庆荣, 陈曦, 唐莉娜, 刘岑薇, 宋铁英, 黄毅斌 . 烟秆生物质炭对烟草根际土壤养分及细菌群落的影响. 中国烟草科学, 2017,38(1):42-47.
doi: 10.13496/j.issn.1007-5119.2017.01.007
Wang C J, Chen Q R, Chen X, Tang L N, Liu C W, Song T Y, Huang Y B . Effects of tobacco stalk derived biochar on root zone soil nutrients and bacterial communities in the tobacco field. China Tob Sci, 2017,38(1):42-47 (in Chinese with English abstract).
doi: 10.13496/j.issn.1007-5119.2017.01.007
[12] 张继旭, 张继光, 张忠锋, 王瑞, 高林, 戴衍晨, 孟贵星, 王树键, 马强, 许晴, 申国明 . 秸秆生物炭对烤烟生长发育、土壤有机碳及酶活性的影响. 中国烟草科学, 2016,37(5):16-21.
doi: 10.13496/j.issn.1007-5119.2016.05.004
Zhang J X, Zhang J G, Zhang Z F, Wang R, Gao L, Dai Y C, Meng G X, Wang S J, Ma Q, Xu Q, Shen G M . Effects of straw biochar on tobacco growth, soil organic carbon and soil enzyme activities. China Tob Sci, 2016,37(5):16-21 (in Chinese with English abstract)
doi: 10.13496/j.issn.1007-5119.2016.05.004
[13] 王金星, 李高坡, 符云鹏, 王念磊, 程玉渊, 谭阳 . 施用生物炭、黄腐酸钾对云烟87烤烟产质量的影响. 山东农业科学, 2017,49(6):83-87.
doi: 10.14083/j.issn.1001-4942.2017.06.018
Wang J X, Li G P, Fu Y P, Wang N L, Cheng Y Y, Tan Y . Effects of applying biochar and potassium flavate on the yield and quality of Yunyan 87 flue-cured tobacco. Shandong Agric Sci, 2017,49(6):83-87 (in Chinese with English abstract).
doi: 10.14083/j.issn.1001-4942.2017.06.018
[14] 刘卉, 周清明, 刘勇军, 黎娟, 张黎明, 张明发 . 生物炭对烤烟生长及烟叶质量的影响. 中国农业科技导报, 2017,19(10):73-81.
Liu H, Zhou Q M, Liu Y J, Li J, Zhang L M, Zhang M F . Effects of biochar on the growth of flue cured tobacco and quality of tobacco. J Agric Sci Tech, 2017,19(10):73-81 (in Chinese with English abstract).
[15] 李静静 . 生物炭与氮肥配施对植烟土壤特性、烤烟生长及烟叶品质的影响. 河南农业大学硕士学位论文,河南郑州, 2016.
Li J J . Effects of Combined Application of Biochar and Nitrogen Fertilizers on Soil Properties Growth and Quality of Flue-cured Tobacco. MS Thesis of Henan Agricultural University, Zhengzhou, Henan,China, 2016 (in Chinese with English abstract).
[16] 饶霜 . 生物炭对番茄青枯病抗性、土壤微生物活性及有机酸含量的影响. 华南农业大学硕士学位论文,广州广东, 2016.
Rao X . Effect of Biochar on Bacterial Wilt Resistance of Tomato, Soil Microbial Activity and Organic Acid. MS Thesis of South China Agricultural University, Guangzhou, Guangdong,China, 2016 (in Chinese with English abstract).
[17] 王光飞, 马艳, 郭德杰, 王秋君 . 秸秆生物炭对辣椒疫病的防控效果及机理研究. 土壤, 2015,47:1107-1114.
Wang G F, Ma Y, Guo D J, Wang Q J . Effect and mechanism of straw biochar on disease control of Phytophthora blight of chili pepper. Soils, 2015,47:1107-1114 (in Chinese with English abstract).
[18] 马艳, 王光飞 . 生物炭防控植物土传病害研究进展. 中国土壤与肥料, 2014, ( 6):14-20.
doi: 10.11838/sfsc.20140603
Ma Y, Wang G F . Review of biochar utilization on soil-borne disease control. Soil & Fert Sci, 2014, ( 6):14-20 (in Chinese with English abstract).
doi: 10.11838/sfsc.20140603
[19] Jaiswal A K, Elad Y, Graber E R, Frenkel O . Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature feedstock and concentration. Soil Biol & Biochem, 2014,69:110-118.
doi: 10.1016/j.soilbio.2013.10.051
[20] Guijarro M B, Mattner S W, Wiechel T J. Suppession of damping-off of radish caused by Rhizoctonia solani AG2.1 with soil carbon amendments. In: the 6th Australasian Soilborne Diseases Symposium. Queensland, Australia, 2010. p 49.
[21] 林先贵 . 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010. pp 1-13.
Lin X G. Principles and Methods of Soil Microbiology Research. Beijing: Higher Education Press, 2010. pp 1-13(in Chinese).
[22] Borrero C, Ordova’s J, Trillas M I . Tomato fusarium wilt suppressive: the relationship between the organic plant growth media and their microbial communities as characterised by Biolog®. Soil Biol & Biochem, 2006,38:1631-1637.
doi: 10.1016/j.soilbio.2005.11.017
[23] Xiang Z, Zhang L, Zhang Q . Soil nutrients and microbial functional diversity of different stand types in Qinghai province. Sci Silvae Sin, 2014,50(4):22-31.
doi: 10.11707/j.1001-7488.20140404
[24] 赵兰凤, 张新明, 程根, 张丽娟, 刘小峰, 李华兴 . 生物炭对菜园土壤微生物功能多样性的影响. 生态学报, 2017,37:4754-4762.
doi: 10.5846/stxb201604220758
Zhao L F, Zhang X M, Cheng G, Zhang L J, Liu X F, Li H X . Effects of biochar on microbial functional diversity of vegetable garden soil. Acta Ecol Sin, 2017,37:4754-4762 (in Chinese with English abstract).
doi: 10.5846/stxb201604220758
[25] 万川, 蒋珍茂, 赵秀兰, 魏世强, 李玲, 马冠华, 徐畅, 陈益银 . 深翻和施用土壤改良剂对烟草青枯病发生的影响. 烟草科技, 2015,49(11):14-20.
doi: 10.16135/j.issn1002-0861.20150203
Wan C, Jiang Z M, Zhao X L, Wei S Q, Li L, Ma G H, Xu C, Cheng Y Y . Effects of deep ploughing and soil amendment application on incidence of tobacco bacterial wilt. Tobacco Sci Tech, 2015,49(11):14-20 (in Chinese with English abstract).
doi: 10.16135/j.issn1002-0861.20150203
[26] 姚玲丹, 程广焕, 王丽晓, 陈环宇, 楼莉萍 . 施用生物炭对土壤微生物的影响. 环境化学, 2015,34:697-704.
doi: 10.7524/j.issn.0254-6108.2015.04.2014072802
Yao L D, Cheng G H, Wang L X, Chen H Y, Lou L P . Effects of biochar application to micro organisms in soil. Environ Chem, 2015,34:697-704 (in Chinese with English abstract).
doi: 10.7524/j.issn.0254-6108.2015.04.2014072802
[27] 杨宇虹, 陈冬梅, 晋艳, 王海斌, 段玉琪, 郭徐魁, 何海斌, 林文雄 . 不同肥料种类对连作烟草根区土壤微生物功能多样性的影响. 作物学报, 2011,37:105-111.
doi: 10.3724/SP.J.1006.2011.00105
Yang Y H, Chen D M, Jin Y, Wang H B, Duan Y Q, Guo X K, He H B, Lin W X . Effects of different fertilizers on functional diversities of microbial flora in rhizospheric soil of monoculture tobacco. Acta Agron Sin, 2011,37:105-111 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00105
[28] 张云伟, 徐智, 汤利, 李艳红, 宋建群, 徐健钦 . 不同有机肥对烤烟根际土壤微生物的影响. 应用生态学报, 2013,24:2551-2556.
Zhang Y W, Xu Z, Tang L, Li Y H, Song J Q, Xu J Q . Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco. Chin J App Ecol, 2013,24:2551-2556 (in Chinese with English abstract).
[29] 袁英英 . 生物有机肥对番茄青枯病及土壤微生物的影响. 华南农业大学硕士学位论文, 广州广东, 2011.
Yuan Y Y . Effect of Biological Organic Fertilizer on Tomato Bacterial Wilt and Soil Microorganism. MS Thesis of South China Agricultural University, Guangzhou, Guangdong,China, 2011 (in Chinese with English abstract).
[30] Bastida F, Hernandez T, Albaladejo J . Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol & Biochem, 2013,22:12-21.
doi: 10.1016/j.soilbio.2013.04.022
[31] 张淑香, 高子勤, 刘海玲 . 连作障碍与根际微生态研究: Ⅲ. 土壤酚酸物质及其生物学效应. 应用生态学报, 2000,11:741-744.
doi: 10.1088/0256-307X/17/9/008
Zhang S X, Gao Z Q, Liu H L . Continuous cropping obstacle and rhizospheric microecology: III. Soil phenolic acids and their biological effect. Chin J App Ecol, 2000,11:741-744 (in Chinese with English abstract).
doi: 10.1088/0256-307X/17/9/008
[32] Irikiin Y, Nishiyama M, Otsuka S . Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl Soil Ecol, 2006,34:27-32.
doi: 10.1016/j.apsoil.2005.12.003
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!