欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1260-1269.doi: 10.3724/SP.J.1006.2019.81083

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦产量对中后期氮素胁迫的响应及品种间差异

李朝苏1,吴晓丽1,汤永禄1,*(),李俊1,马孝玲1,李式昭1,黄明波2,刘淼1   

  1. 1 四川省农业科学院作物研究所/作物生理生态及栽培四川省重点实验室, 四川成都 610066
    2 四川省广汉市生产力促进中心, 四川广汉 618300
  • 收稿日期:2018-11-20 接受日期:2019-04-15 出版日期:2019-08-12 网络出版日期:2019-07-16
  • 通讯作者: 汤永禄
  • 作者简介:E-mail: xiaoli1755@163.com, Tel: 028-84504560
  • 基金资助:
    本研究由国家自然科学基金项目(31571590);国家重点研发计划项目(2016YFD0300406);四川省农作物育种攻关项目资助(2016NYZ0051)

Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage

LI Chao-Su1,WU Xiao-Li1,TANG Yong-Lu1,*(),LI Jun1,MA Xiao-Ling1,LI Shi-Zhao1,HUANG Ming-Bo2,LIU Miao1   

  1. 1 Crop Research Institute, Sichuan Academy of Agricultural Sciences/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
    2 Guanghan Productivity Promotion Center, Guanghan 618300, Sichuan, China
  • Received:2018-11-20 Accepted:2019-04-15 Published:2019-08-12 Published online:2019-07-16
  • Contact: Yong-Lu TANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571590);the National Key R&D Program of China(2016YFD0300406);the Crops Breeding Project in Sichuan Province(2016NYZ0051)

摘要:

生育中后期土壤供氮不足是导致小麦减产的重要原因之一。2015—2017年连续2个生长季, 选择人工合成六倍体小麦衍生品种(synthetic hexaploid wheat-derived cultivar, SDC)和非人工合成小麦衍生品种(Non-synthetic hexaploid wheat-derived cultivar, NSC)各3个, 设置2个施氮水平, 研究其产量及相关生理参数对中后期氮素胁迫的响应。SDC包括川麦42、川麦104和绵麦367, NSC包括绵麦37、川农16和川麦30。2个施氮水平为正常施氮处理(Nn, 150 kg N hm -2, 底肥40%、拔节肥60%)和中后期氮胁迫处理(Ns, 60 kg N hm -2, 全部作底肥)。结果表明, 氮胁迫下, 两类品种产量均值降幅接近(SDC 19.6%, NSC 20.4%), 但正常供氮下SDC产量高于NSC (高14.4%), 其氮胁迫下的产量也较高(高15.9%)。氮胁迫下, SDC的生物产量、单位面积粒数均高于NSC。开花期, 两类品种在2个氮素水平下的叶面积指数(LAI)接近, 但在灌浆中后期的降幅SDC小于NSC, 花后22 d, SDC在高、低施氮水平下的LAI较NSC分别高25.1%和16.0%。开花灌浆阶段, 2个施氮水平下SDC旗叶和倒二叶SPAD始终高于NSC, 氮胁迫下二者的差距增大。两类品种的净光合速率(NPR)和群体光合速率(CAP)的差异也主要出现在灌浆中后期, 氮胁迫下SDC以上2个参数较NSC均有优势。氮胁迫下, 花后功能叶片的硝态氮、铵态氮、可溶性糖含量SDC也高于NSC。SDC较NSC有更高的氮素利用效率(NUtE), 氮胁迫下, 二者NUtE的差距增加。以上结果表明, 低氮胁迫下SDC的生产力高于NSC, 这与其较高的库容、较长叶片功能期有关。

关键词: 人工合成小麦衍生品种, 氮胁迫, 产量, 光合特性, 氮素利用效率

Abstract:

Soil nitrogen (N) deficiency at mid-late growth stage is one of the serious factors leading to lowered grain yield of wheat. The high yield potential of synthetic hexaploid wheat-derived cultivar (SDC) has been well documented, however, its responses to N deficiency at mid-late growth stage need further study. Six cultivars were grown under two fertilizer-N applied conditions over two consecutive growing seasons (2015-2017). The cultivars consisted of three typical SDC (Chuanmai 42, Chuanmai 104 and Mianmai 367) and three non-synthetic hexaploid wheat-derived cultivar (NSC; Mianmai 37, Chuannong 16, and Chuanmai 30). Two N treatments consisted of normal N application (Nn, 150 kg hm -2, basal fertilizer 40%, top dressing 60%) and N stress (Ns, 60 kg hm -2, basal fertilizer only), and grain yield and associated physiological traits of these wheat cultivars in response to N deficiency at mid-late growth stage were studied. It turned out that the mean yield reduction of SDC (19.6%) and NSC (20.4%) was close under N stress, while SDC showed 14.4% (Nn) and 15.9% (Ns) advantages on yield than NSC at both N treatments. Besides, the biomass and grain number per unit area of SDC were higher than those of NSC. At anthesis, SDC and NSC had roughly the same leaf area index (LAI) values, whereas the LAI decline in SDC was less than that in NSC at mid-late grain-filling stage. Compared with NSC, the LAI of SDC was 25.1% (Nn) and 16.0% (Ns) higher at 22 days after anthesis, respectively. The SPAD values of flag and penultimate leaves in SDC were always higher than those in NSC at both N treatments during grain filling period, and the gap between them was increased under N stress. The differences in net photosynthetic rate (NPR) and canopy photosynthetic rate (CAP) between the two types of wheat also mainly appeared at mid-late grain-filling stage, and SDC still had advantages compared with NSC under Ns. In addition, the nitrate N, ammonium N and soluble sugar content in flag and penultimate leaves in SDC were higher than those in NSC under N stress condition. At last, SDC had higher N utilization efficiency (NUtE) than NSC, which difference between SDC and NSC was further increased by N stress. Overall, the above results indicate that the productivity of SDC is stronger than that of NSC at low N condition, which might be related to the higher sink capacity and longer leaf function period in SDC.

Key words: synthetic hexaploid wheat-derived cultivar, nitrogen stress, grain yield, photosynthetic characteristics, nitrogen utilization efficiency

图1

小麦生育期间(11月至翌年5月)的日最高温和最低温"

表1

参试品种相关信息"

类别
Type
品种
Cultivar
系谱
Pedigree
审定年份
Year of release
区试产量
YD? (kg hm-2)
区试增产率
Increase rate of yield (%)
SDC 川麦42 Chuanmai 42 Syn 769/Chuanmai 30//Chuan 6415 2004 6130 16.4
川麦104 Chuanmai 104 Chuanmai 42/Chuannong 16 2012 6120 14.1
绵麦367 Mianmai 367 Mianmai 37/Chuanmai 43 2010 5690 14.0
NSC 绵麦37 Mianmai 37 96EW37/Mianyang 90-100 2004 5110 12.6
川农16 Chuannong 16 Chuanyu 12/7-429 2002 4819 13.0
川麦30 Chuanmai 30 77//YAA/ALD‘S’/3/YSZ//ST2022/983 1998 4481 8.58

表2

不同小麦品种产量、产量构成及生物产量对中后期氮胁迫的响应"

年份
Year
处理Treatment 品种
Cultivar
产量
Yield
(kg hm-2)
粒数
Grain number (×104 hm-2)
千粒重
1000-kernel weight (g)
生物产量
Biomass
(kg hm-2)
收获指数
Harvest index
2016 Nn 川麦42 Chuanmai 42 9627 a 17851 a 48.3 a 18989 a 0.44 a
川麦104 Chuanmai 104 9263 a 17190 a 45.6 b 18296 ab 0.44 a
绵麦367 Mianmai 367 9556 a 18518 a 44.6 c 18702 a 0.45 a
绵麦37 Mianmai 37 7284 b 15203 a 45.8 b 14861 c 0.43 a
川农16 Chuannong 16 9119 a 16413 a 42.7 d 18937 a 0.42 a
川麦30 Chuanmai 30 7540 b 16397 a 40.4 e 15430 c 0.43 a
平均 Mean 8732 16929 44.6 17536 0.43
SDC 9482 17853* 46.2 18663 0.44**
NSC 7981 16004 43.0 16409 0.43
Ns 川麦42 Chuanmai 42 7696 a 12744 b 49.7 a 15493 a 0.43 ab
川麦104 Chuanmai 104 7335 a 12705 b 46.9 b 14973 ab 0.43 ab
绵麦367 Mianmai 367 7991 a 15275 a 48.5 ab 15527 a 0.45 a
绵麦37 Mianmai 37 6447 b 11231 b 48.1 b 13442 bc 0.42 bc
川农16 Chuannong 16 6509 b 11960 b 44.0 c 13170 bc 0.43 ab
川麦30 Chuanmai 30 5512 c 12303 b 40.8 d 12082 c 0.40 c
平均 Mean 6915 12703 46.3 14115 0.43
SDC 7674* 13575 48.4 15331** 0.44
NSC 6156 11831 44.3 12898 0.42
2017 Nn 川麦42 Chuanmai 42 8355 d 12893 c 59.7 a 18647 a 0.39 c
川麦104 Chuanmai 104 10332 a 16922 a 53.9 bc 18615 a 0.48 a
绵麦367 Mianmai 367 9815 b 15559 ab 56.0 b 18507 a 0.46 ab
绵麦37 Mianmai 37 8766 c 15218 ab 55.6 b 17188 b 0.44 b
川农16 Chuannong 16 8837 c 15346 ab 52.4 c 16426 b 0.47 ab
川麦30 Chuanmai 30 8297 d 14443 bc 53.8 bc 16222 b 0.45 b
平均 Mean 9067 15063 55.2 17601 0.46
SDC 9501 15125 56.5 18590* 0.45
NSC 8634 15002 54.0 16612 0.45
Ns 川麦42 Chuanmai 42 6352 bc 8735 b 60.4 a 14798 a 0.37 b
川麦104 Chuanmai 104 8213 a 11480 ab 56.8 abc 15350 a 0.46 a
绵麦367 Mianmai 367 8229 a 14154 a 53.3 c 15343 a 0.47 a
绵麦37 Mianmai 37 7397 abc 10912 ab 59.3 a 15170 a 0.42 ab
川农16 Chuannong 16 7643 ab 12346 ab 55.3 bc 15112 a 0.44 a
川麦30 Chuanmai 30 6232 c 9202 b 58.0 ab 14838 a 0.37 b
平均 Mean 7344 11138 57.2 15102 0.42
SDC 7598 11456 56.9 15164 0.43
NSC 7091 10820 57.5 15040 0.41

图2

SDC和NSC叶面积指数对中后期氮胁迫的响应(2017) Nn: 正常施氮处理; Ns: 氮胁迫处理。误差线为标准差。图中数据为同一施氮水平下的同一类3个品种的平均值。其他缩写同表1。"

图3

SDC和NSC上三叶SPAD值对中后期氮胁迫的响应 Nn: 正常施氮处理; Ns: 氮胁迫处理。图中数据为同一施氮水平下的同一类3个品种的平均值。其他缩写同表1。"

图4

SDC和NSC旗叶净光合速率(NPR)对中后期氮胁迫的响应 缩写同表1和图2。误差线为标准差。图中数据为同一施氮水平下的同一类3个品种的平均值。"

图5

SDC和NSC群体光合速率(CAP)对中后期氮胁迫的响应(2017) 缩写同表1和图2。误差线为标准差。图中数据为同一施氮水平下的同一类3个品种的平均值。"

表3

SDC和NSC旗叶和倒2叶硝态氮、铵态氮和可溶性糖含量对中后期氮胁迫的响应"

年份
Year
处理
Treatment
花后天数
Days after
anthesis (d)
品种
Cultivar
硝态氮含量
NO3--N content
(mg g-1 FW)
铵态氮含量
NH4+-N content
(mg g-1 FW)
可溶性糖含量
Soluble sugar content
(mg g-1 FW)
2016 Nn 0 SDC 0.25 0.27 29.6
NSC 0.30 0.21 42.4**
22 SDC 0.21 0.14 26.2
NSC 0.26 0.11 38.8**
Ns 0 SDC 0.37 0.19 45.3
NSC 0.32 0.13 32.7
22 SDC 0.31 0.10 41.4
NSC 0.26 0.11 30.4
年份
Year
处理
Treatment
花后天数
Days after
anthesis (d)
品种
Cultivar
硝态氮含量
NO3--N content
(mg g-1 FW)
铵态氮含量
NH4+-N content
(mg g-1 FW)
可溶性糖含量
Soluble sugar content
(mg g-1 FW)
2017 Nn 0 SDC 0.08 0.12 30.6
NSC 0.09 0.11 31.9
22 SDC 0.10 0.18** 21.1
NSC 0.10 0.11 24.2
Ns 0 SDC 0.11* 0.10 38.5*
NSC 0.09 0.11 29.5
22 SDC 0.10 0.12 31.9
NSC 0.10 0.09 32.7

图6

SDC和NSC氮素利用效率(NUtE)对中后期氮胁迫的响应 缩写同表1和图2。误差线为标准差。图中数据为同一施氮水平下的同一类3个品种的平均值。"

[1] Zörb C, Ludewig U, Hawkesford M J . Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018,23:1029-1037.
doi: 10.1016/j.tplants.2018.08.012
[2] 吴晓丽, 李朝苏, 汤永禄, 刘于斌, 李伯群, 樊高琼, 熊涛 . 氮肥运筹对小麦产量、氮素利用效率和光能利用率的影响. 应用生态学报, 2017,28:1889-1898.
Wu X L, Li C S, Tang Y L, Liu Y B, Li B Q, Fan G Q, Xiong T . Effect of nitrogen management modes on grain yield, nitrogen use efficiency and light use efficiency of wheat. China J Appl Ecol, 2017,28:1889-1898 (in Chinese with English abstract).
[3] Tian Z W, Liu X X, Gu S L, Yu J H, Zhang L, Zhang W W, Jiang D, Cao W X, Dai T B . Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. J Integr Agric, 2018,17:2648-2661.
doi: 10.1016/S2095-3119(18)62086-6
[4] 张士昌, 史占良, 李孟军, 李亚青, 底瑞耀, 李雁鸣 . 长期定位氮胁迫对小麦碳氮代谢氮素利用及产量的影响. 河南农业科学, 2016,45(12):13-19.
Zhang S C, Shi Z L, Li M J, Li Y Q, Di R Y, Li Y M . Effect of long-term nitrogen stress on carbon and nitrogen metabolism nitrogen use efficiency and yield of wheat. J Henan Agric Sci, 2016,45(12):13-19 (in Chinese with English abstract).
[5] Papakosta D K, Gagianas A A . Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron J, 1991,83:864-870.
doi: 10.2134/agronj1991.00021962008300050018x
[6] Prystupa P, Savin R, Slafer G A . Grain number and its relationship with dry matter, N and P in the spikes at heading in response to N×P fertilization in barley. Field Crops Res, 2004,90:245-254.
doi: 10.1016/j.fcr.2004.03.001
[7] Madani A, Shirani-Rad A, Pazoki A, Nourmohammadi G, Zarghami R, Mokhtassi-Bidgol A . The impact of source or sink limitations on yield formation of winter wheat(Triticum aestivum L.) due to post-anthesis water and nitrogen deficiencies. Plant Soil Environ, 2010,56:218-227.
[8] 杨慧勇, 林凡云, 陆琼娴, 徐剑宏, 史建荣 . 中国冬、春性小麦品种遗传多样性的微卫星标记分析. 麦类作物学报, 2007,27:555-559.
Yang H Y, Lin F Y, Lu Q X, Xu J H, Shi J R . Genetic diversity of Chinese winter and spring wheat varieties detected by microsatellite markers. J Triticeae Crops, 2007,27:555-559 (in Chinese with English abstract).
[9] Li A L, Liu D C, Yang W Y, Kishii M, Mao L . Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering, 2018,4:552-558.
doi: 10.1016/j.eng.2018.07.001
[10] Tang Y L, Rosemarne G M, Li C S, Wu X L, Yang W Y, Wu C . Physiological factors under pinning grain yield improvement of synthetic derived wheat in southeastern China. Crop Sci, 2015,55:98-112.
doi: 10.2135/cropsci2014.02.0124
[11] 李俊, 魏会廷, 胡晓蓉, 李朝苏, 汤永禄, 刘登才, 杨武云 . 川麦42中源于人工合成小麦的一个高产位点鉴定. 作物学报, 2011,37:255-262.
Li J, Wei H T, Hu X R, Li C S, Tang Y L, Liu D C, Yang W Y . Identification of a high-yield introgression locus from synthetic hexaploid wheat in Chuanmai 42. Acta Agron Sin, 2011,37:255-262 (in Chinese with English abstract).
[12] 汤永禄, 李朝苏, 吴晓丽, 吴春, 杨武云, 黄钢, 马孝玲 . 人工合成小麦衍生品种的物质积累、冠层结构及群体光合特性. 中国农业科学, 2014,47:844-855.
Tang Y L, Li C S, Wu X L, Wu C, Yang W Y, Huang G, Ma X L . Accumulation of dry matter, canopy structure and photosynthesis of synthetic hexaploid wheat-derived high-yielding varieties grown in Sichuan Basin, China. Sci Agric Sin, 2014,47:844-855 (in Chinese with English abstract).
[13] 李朝苏, 汤永禄, 吴春, 吴晓丽, 黄钢, 何刚, 郭大明 . 施氮量对四川盆地小麦生长及灌浆的影响. 植物营养与肥料学报, 2015,21:873-883.
Li C S, Tang Y L, Wu C, Wu X L, Huang G, He G, Guo D M . Effect of N rate on growth and grain filling of wheat in Sichuan Basin. Plant Nutr Fert Sci, 2015,21:873-883 (in Chinese with English abstract).
[14] 汤永禄, 吴晓丽, 吴元奇, 李朝苏, 吴春, 郭大明 . 小麦籽粒灌浆参数的基因型差异及其稳定性分析. 中国农业大学学报, 2014,19(1):9-20.
Tang Y L, Wu X L, Wu Y Q, Li C S, Wu C, Guo D M . Analysis of the genotypic variation and stability of grain filling parameters of wheat. J China Agric Univ, 2014,19(1):9-20 (in Chinese with English abstract).
[15] 李俊, 魏会廷, 杨粟洁, 李朝苏, 汤永禄, 胡晓蓉, 杨武云 . 川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应. 作物学报, 2009,35:2167-2173.
Li J, Wei H T, Yang S J, Li C S, Tang Y L, Hu X R, Yang W Y . Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42. Acta Agron Sin, 2009,35:2167-2173 (in Chinese with English abstract).
[16] Hawkesford M J, Araus J L, Park R, Calderini D, Miralles D, Shen T M, Zhang J P, Parry M A J . Prospects of doubling global wheat yields. Food Energy Security, 2013,2:34-48.
doi: 10.1002/fes3.15
[17] Nehe A S, Misra S, Murchie E H, Chinnathambi K, Foulkes M J . Genetic variation in N-use efficiency and associated traits in Indian wheat cultivars. Field Crops Res, 2018,225:152-162.
doi: 10.1016/j.fcr.2018.06.002
[18] 剧成欣, 周著彪, 赵步洪, 王志琴, 杨建昌 . 不同氮敏感性粳稻品种的氮代谢与光合特性比较. 作物学报, 2018,44:405-413.
Ju C X, Zhou Z B, Zhao B H, Wang Z Q, Yang J C . Comparison in nitrogen metabolism and photosynthetic characteristics between japonica rice varieties differing in nitrogen sensitivity. Acta Agron Sin, 2018,44:405-413 (in Chinese with English abstract).
[19] 韩胜芳, 李淑文, 文宏达, 李雁鸣, 肖凯 . 不同氮效率小麦品种的光合碳同化特性. 植物营养与肥料学报, 2006,12:797-804.
Han S F, Li S W, Wen H D, Li Y M, Xiao K . Characterization of photosynthetic carbon assimilation in wheat varieties with different N efficiency. Plant Nutr Fert Sci, 2006,12:797-804 (in Chinese with English abstract).
[20] 郭文善, 封超年, 严六零, 彭永欣, 朱新开, 宗爱国 . 小麦开花后源库关系分析. 作物学报, 1995,21:334-340.
Guo W S, Feng C N, Yan L L, Peng Y X, Zhu X K, Zong A G . Analysis of source-sink relationship after anthesis in wheat. Acta Agron Sin, 1995,21:334-340 (in Chinese with English abstract).
[21] 曹蓓蓓, 王仕稳, 齐凌云, 陈道钳, 殷俐娜, 邓西平 . 小麦苗期叶片碳氮平衡与低氮诱导的叶片衰老之间的关系. 麦类作物学报, 2017,37:673-679.
Cao B B, Wang S W, Qi L Y, Chen D Q, Yin L N, Deng X P . Carbon/nitrogen balance involved in nitrogen deficiency induced leaf senescence in wheat seedling. J Triticeae Crops, 2017,37:673-679 (in Chinese with English abstract).
[22] 李春燕, 陈思思, 徐雯, 李东升, 顾骁, 朱新开, 郭文善, 封超年 . 苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响. 作物学报, 2011,37:2293-2298.
Li C Y, Chen S S, Xu W, Li D S G X, Zhu X K, Guo W S, Feng C N . Effect of low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar Yangmai 16. Acta Agron Sin, 2011,37:2293-2298 (in Chinese with English abstract).
[23] 龚月桦 . 持绿小麦的筛选及同化物的积累与转运. 西北农林科技大学硕士论文, 陕西杨凌, 2008. pp 12-22.
Gong Y H . The Filtration of Stay Green Wheat and Study on the Accumulation and Transportation of Assimilates in Stay Green Wheat. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2008. pp 12-22 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!