欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (3): 507-519.doi: 10.3724/SP.J.1006.2021.03024

• 耕作栽培·生理生化 • 上一篇    下一篇

不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应

朱亚利1, 王晨光2, 杨梅1, 郑学慧1, 赵成凤1, 张仁和1,*()   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100
    2陕西省农业技术推广总站, 陕西西安 710003
  • 收稿日期:2020-05-06 接受日期:2020-10-14 出版日期:2021-03-12 网络出版日期:2020-10-28
  • 通讯作者: 张仁和
  • 作者简介:E-mail: zhuyali1994@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0300304);陕西省重点研发计划项目(2017ZDCXL-NY-02-02);陕西省技术创新引导专项资助(2019TG-002)

Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density

ZHU Ya-Li1, WANG Chen-Guang2, YANG Mei1, ZHENG Xue-Hui1, ZHAO Cheng-Feng1, ZHANG Ren-He1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Shaanxi Agronomy and Technology Extension Station, Xi’an 710003, Shaanxi, China
  • Received:2020-05-06 Accepted:2020-10-14 Published:2021-03-12 Published online:2020-10-28
  • Contact: ZHANG Ren-He
  • Supported by:
    National Key Research and Development Program of China(2017YFD0300304);Shaanxi Key Research and Development Program(2017ZDCXL-NY-02-02);Shaanxi Technology Innovation and Guide Project(2019TG-002)

摘要:

研究密度对不同熟期玉米品种不同粒位的籽粒灌浆和脱水特性的调控效应, 为陕北灌区春玉米密植高产机械粒收技术提供依据。于2018—2019年以中熟品种先玉335 (Xianyu 335)和晚熟品种东单60 (Dongdan 60)为材料, 设置45,000 (D1)、60,000 (D2)、75,000 (D3)、90,000 (D4)株 hm-2四个种植密度, 分析其不同粒位籽粒灌浆、脱水特性及其与气候因子的相关性。结果表明, 密度的增加能显著提高不同熟期品种玉米籽粒产量, 其中2018年2个品种均在D4处理下达到最高产量; 2019年先玉335和东单60分别在D4和D3处理下达到最高产量, 2年平均最高产量分别为18,739 kg hm-2和17,111 kg hm-2, 较D1处理产量分别提高了32.2%和27.7%。随着种植密度的增加, 不同粒位的籽粒灌浆速率降低, 粒重减小, 脱水速率加快。在D4种植密度下, 先玉335下部和上部籽粒平均灌浆速率较东单60分别高0.08 g d-1和0.04 g d-1, 粒重较东单60分别高3.6 g和1.6 g。生理成熟时不同粒位的籽粒含水率与吐丝到生理成熟间有效积温呈显著正相关, 总脱水速率与灌浆速率相关性不显著。先玉335不同粒位的籽粒脱水速率快, 且下部和上部籽粒平均脱水速率较东单60高0.006和0.005% ℃ d-1。与下部籽粒比, 上部籽粒灌浆速率低、灌浆期长、粒重小、后期脱水快、含水率达到28%和25%所需积温少。可见, 2个品种籽粒灌浆和脱水特性对增密的响应其上部籽粒更敏感; 与东单60相比, 先玉335密植下籽粒灌浆速率高, 粒重大, 且后期脱水速率快。因此, 选择中熟品种结合适宜增密能够实现陕北灌区玉米密植高产机械粒收生产。

关键词: 春玉米, 熟期, 粒位, 籽粒灌浆, 脱水特性, 产量

Abstract:

Exploring the regulation effect of planting density on grain filling and dehydration characteristics of kernels located in different ear positions in different maturity maize hybrids could provide theoretical and technical reference for high yield production for the mechanized grain harvest of spring maize in northern Shaanxi irrigation area. A field experiment was conducted using the medium maturity maize hybrid Xianyu 335 and the late maturity maize hybrid Dongdan 60 with four plant densities of 45,000 (D1), 60,000 (D2), 75,000 (D3), and 90,000 (D4) plants hm-2 from 2018 to 2019. Their grain filling and dehydration characteristics at different grain positions and their correlation with climatic factors were analyzed. The results showed that increasing density could significantly increase the grain yield with different maturity maize hybrids with both hybrids reaching the highest yield under D4 treatment in 2018; Xianyu 335 and Dongdan 60 reached the highest yield under D4 and D3 treatments in 2019, respectively, and the 2-year average highest yields were 18,739 kg hm-2 and 17,111 kg hm-2, which were 32.2% and 27.7% higher than those under D1 treatment. With the increase of plant density the grain filling rate and the grain weight decreased, and the dehydration rate accelerated of different grain positions. Under D4 plant density, the average grain filling rate of the lower and upper grains of Xianyu 335 was 0.08 g d-1 and 0.04 g d-1 higher than that of Dongdan 60, and the grain weight was 3.6 g and 1.6 g higher than that of Dongdan 60, respectively. The correlation analysis showed that the grain moisture content of different grain positions was positively correlated with the effective accumulated temperature from silking to physiological maturity stage, but the total dehydration rate was not significantly correlated with grain filling rate. The grain dehydration rate of Xianyu 335 at different grain positions was high, and the average total dehydration rate of lower and upper grains was 0.006% °C d -1 and 0.005% °C d -1 higher than that of Dongdan 60. Furthermore, compared with the lower grains, the upper kernels had lower filling rate, longer filling period, smaller grain weight, faster dehydration at the later stage, and required less accumulated temperature to reach 28% and 25% moisture content. Based on our study, the upper kernels were more sensitive to higher plant density than lower kernels. Compared with Dongdan 60, the mid-mature maize hybrid Xianyu 335 has the higher grain filling rate, larger grain weight, and faster dehydration rate in the dense planting conditions. In conclusion, properly increased plant density coupled with middle-maturity maize hybrids is a potential way to increase the grain yield for mechanized grain harvest in the irrigation area of Northern Shaanxi.

Key words: spring maize, hybrid maturity, grain position, grain filling, dehydration characteristics, grain yield

图1

2018-2019年玉米生育期气温和日降雨变化"

表1

密度对不同熟期玉米品种产量及其构成因素的影响"

年份
Year
品种
Hybrids
密度
Density
实收穗数
Panicle number
(Ears hm-2)
穗粒数
Grains per ear
(spike hm-2)
百粒重
100-kernel weight
(g)
籽粒产量
Grain yield
(kg hm-2)
2018 东单60
Dongdan 60
D1 46,354±564 d 747±10.5 a 38.6±0.2 a 13,194±24 d
D2 60,101±5321 c 700±4.5 b 37.5±0.1 b 14,128±167 c
D3 68,182±5463 b 656±15.5 c 33.8±0.4 c 16,459±105 b
D4 82,323±875 a 611±8.5 d 32.8±0.9 d 16,853±166 a
先玉335
Xianyu 335
D1 46,465±875 d 748±11.3 a 42.5±1.6 a 14,179±142 d
D2 56,061±1515 c 696±18.2 b 41.0±1.5 b 15,500±188 c
D3 65,152±1515 b 656±9.6 c 39.6±0.9 c 18,010±88 b
D4 80,324±358 a 633±10.5 d 38.9±0.2 d 18,741±107 a
2019 东单60
Dongdan 60
D1 46,308±744 d 744±12.6 a 38.7±0.2 a 13,627±180 d
D2 60,771±1936 c 696±10.5 b 37.7±0.1 b 15,276±245 c
D3 68,421±1419 b 653±14.6 c 33.7±0.6 c 17,369±94 a
D4 81,774±355 a 611±18.3 d 33.0±0.6 d 16,976±135 b
先玉335
Xianyu 335
D1 46,108±801 d 742±12.9 a 42.5±0.3 a 14,599±128 c
D2 56,148±789 c 711±15.4 b 41.3±0.1 b 16,107±170 b
D3 65,127±1980 b 653±15.5 c 39.6±0.2 c 18,562±59 a
D4 80,165±999 a 624±8.4 d 38.6±0.2 d 18,737±81 a
变异来源
Source of variation
年份Year (Y) ns ns ns ns
品种Hybrid (H) ** ns ** **
密度Density (D) ** ** ** **
Y×H ns ns ns ns
Y×D ns ns ns ns
Y×D ** ** ** **
Y×H×D ns ns ns ns

表2

不同熟期玉米产量构成因素与密度的回归关系"

项目
Item
品种
Hybrid
回归方程
Regression equation
决定系数
R2
穗粒数
Grains per spike
先玉335 Xianyu 335 y = -0.0027x + 861.9 0.987**
东单60 Dongdan 60 y = -0.0028x + 871.0 0.998**
百粒重
100-kernel weight
先玉335 Xianyu 335 y = -0.00009x + 46.3 0.982**
东单60 Dongdan 60 y = -0.0001x + 45.2 0.931**

表3

不同熟期品种玉米的生育进程与有效积温需求情况"

年份
Year
品种
Hybrid
密度
Density
播种期
Sowing date (M/D)
吐丝期
R1
(M/D)
生理成熟期
R6
(M/D)
吐丝前天数
Days before silking (d)
吐丝前
有效积温
EATBS (℃ d)
吐丝后天数
Days after silking (d)
吐丝后
有效积温
EATAS (℃ d)
生育期
Total growth
总有效积温
TEAT
(℃ d)
2018 东单60
Dongdan 60
D1 4/30 7/16 9/27 77 713.3 73 739.9 150 1453.2
D2 4/30 7/16 9/26 77 713.3 72 734.4 149 1447.7
D3 4/30 7/16 9/26 77 713.3 72 734.4 149 1447.7
D4 4/30 7/16 9/25 77 713.3 71 729.4 148 1442.7
先玉335
Xianyu 335
D1 4/30 7/15 9/22 76 699.8 69 721.5 145 1421.3
D2 4/30 7/16 9/22 77 713.3 68 710.6 145 1423.9
D3 4/30 7/16 9/21 77 713.3 67 704.8 144 1418.2
D4 4/30 7/16 9/20 77 713.3 66 699.4 143 1412.7
2019 东单60
Dongdan 60
D1 4/29 7/15 9/25 77 715.5 72 740.2 149 1455.8
D2 4/29 7/15 9/25 77 715.5 72 740.2 149 1455.8
D3 4/29 7/15 9/24 77 715.5 71 734.1 148 1449.7
D4 4/29 7/15 9/23 77 715.5 70 728.1 147 1443.6
先玉335
Xianyu 335
D1 4/29 7/14 9/22 76 702.0 69 729.2 145 1431.3
D2 4/29 7/15 9/21 77 715.5 68 715.7 145 1431.3
D3 4/29 7/15 9/20 77 715.5 67 710.3 144 1425.8
D4 4/29 7/15 9/19 77 715.5 66 705.4 143 1420.9

图2

密度对不同熟期品种玉米不同粒位籽粒粒重的影响 处理同表1。"

图3

密度对不同熟期品种玉米不同粒位籽粒灌浆速率的影响 处理同表1。"

表4

密度对不同熟期玉米不同粒位籽粒灌浆参数的影响"

年份
Year
品种
Hybrid
粒位
Grain position
密度
Density
Tmax
(d)
Gmax
(g d-1)
Gmean
(g d-1)
D
(d)
Wmax
(g)
a b c 决定系数
R2
2018 东单60
Dongdan 60
下部
Lower
D1 32.2 1.07 0.72 51.0 18.3 36.5 44.1 0.118 0.997
D2 32.2 1.04 0.69 50.5 17.5 34.9 46.0 0.119 0.997
D3 32.0 1.00 0.67 50.0 16.6 33.3 46.3 0.120 0.997
D4 31.6 0.97 0.65 49.2 15.9 31.8 47.0 0.122 0.997
上部
Upper
D1 34.5 0.95 0.63 52.1 16.5 33.0 53.6 0.115 0.997
D2 34.5 0.92 0.61 51.2 15.7 31.3 57.1 0.117 0.997
D3 34.3 0.88 0.59 50.5 14.9 29.7 59.0 0.119 0.997
D4 34.1 0.86 0.57 49.6 14.2 28.4 61.8 0.121 0.997
先玉335
Xianyu 335
下部
Lower
D1 30.1 1.20 0.80 49.0 19.5 39.0 39.8 0.123 0.996
D2 29.8 1.17 0.78 47.6 18.5 37.6 43.1 0.126 0.996
D3 29.5 1.14 0.76 46.4 17.6 35.6 45.4 0.129 0.996
D4 29.4 1.09 0.72 45.7 16.6 33.6 47.6 0.131 0.997
上部
Upper
D1 32.4 1.03 0.69 50.6 17.3 34.6 46.7 0.119 0.997
D2 32.2 0.99 0.66 49.5 16.3 33.2 49.2 0.121 0.998
D3 31.9 0.95 0.64 48.3 15.4 31.2 52.8 0.124 0.998
D4 31.8 0.92 0.61 47.0 14.4 29.3 58.0 0.128 0.998
2019 东单60
Dongdan 60
下部
Lower
D1 32.1 1.05 0.70 52.1 18.2 36.5 40.4 0.115 0.997
D2 32.1 1.01 0.68 51.6 17.4 34.9 42.1 0.116 0.997
D3 31.9 0.98 0.65 51.1 16.6 33.3 42.3 0.117 0.997
D4 31.5 0.95 0.63 50.4 15.9 31.8 42.8 0.119 0.997
上部
Upper
D1 34.1 0.94 0.63 52.0 16.3 32.5 51.3 0.115 0.997
D2 34.2 0.91 0.60 51.0 15.4 30.9 54.8 0.118 0.997
D3 33.9 0.87 0.58 50.3 14.7 29.3 56.6 0.119 0.997
D4 33.5 0.85 0.57 48.8 13.9 27.8 61.2 0.123 0.997
先玉335
Xianyu 335
下部
Lower
D1 30.0 1.17 0.78 50.3 19.5 39.1 35.7 0.119 0.996
D2 29.7 1.14 0.76 48.9 18.6 37.1 38.5 0.123 0.996
D3 29.4 1.11 0.74 47.7 17.6 35.2 40.4 0.126 0.996
D4 29.3 1.06 0.71 46.9 16.6 33.2 42.4 0.128 0.997
上部
Upper
D1 32.3 1.01 0.67 51.6 17.3 34.6 42.7 0.116 0.997
D2 32.1 0.97 0.65 50.6 16.3 32.6 45.0 0.118 0.998
D3 31.8 0.93 0.62 49.3 15.4 30.7 48.1 0.122 0.998
D4 31.7 0.90 0.60 48.0 14.4 28.8 52.7 0.125 0.998

表5

不同熟期品种玉米籽粒含水率方差分析"

变异来源
Source of variation
平方和
Sum of squares
自由度
Degrees freedom
均方
Mean square
F
F-value
年份Year (Y) 1.16 1 1.16 146.05**
品种Hybrid (H) 5.45 1 5.45 683.78**
密度Density (D) 28.13 3 9.38 1176.76**
粒位Grain position (GP) 130.93 1 130.93 16,433.32**
Y×H 0.12 1 0.12 15.38**
Y×D 0.01 3 0.01 0.43
Y×GP 0.13 1 0.13 16.28**
H×D 0.10 3 0.03 4.04**
H×GP 101.87 1 101.87 12,786.23**
D×GP 0.22 3 0.07 9.37**
Y×H×D 0.01 3 0.01 0.38
Y×H×GP 0.15 1 0.15 18.59**
Y×D×GP 0.01 3 0.01 0.29
H×D×GP 0.78 3 0.26 32.67**
Y×H×D×GP 0.01 3 0.01 0.18
误差Error 0.51 64 0.01
总变异Total variation 84,066.82 96

表6

密度对不同熟期玉米不同粒位籽粒脱水速率的影响"

品种
Hybrid
粒位
Grain position
密度
Density
2018 2019
吐丝后有效积
积温
EATAS (℃ d)
生理成熟时籽粒
含水率
GMCPM (%)
总脱水速率
TDR
(% ℃ d-1)
吐丝后有效积
积温
EATAS (℃ d)
生理成熟时籽粒
含水率
GMCPM (%)
总脱水速率
TDR
(% ℃ d-1)
东单60
Dongdan 60
下部
Lower

D1 739.9 32.9 a 0.078 c 740.2 32.6 a 0.077 c
D2 734.4 32.5 a 0.078 c 740.2 32.2 a 0.078 c
D3 734.4 31.9 a 0.080 c 734.1 31.6 a 0.079 c
D4 729.4 31.2 b 0.081 b 728.1 30.9 b 0.081 b
上部
Upper
D1 739.9 31.9 a 0.079 c 740.2 31.6 a 0.079 c
D2 734.4 31.0 b 0.080 b 740.2 30.7 b 0.080 b
D3 734.4 30.5 b 0.081 b 734.1 30.2 c 0.081 b
D4 729.4 30.1 c 0.083 a 728.1 29.8 c 0.082 a
先玉335
Xianyu 335
下部
Lower

D1 721.5 30.8 b 0.082 d 729.2 30.5 b 0.082 d
D2 710.6 30.4 c 0.084 d 715.7 30.1 c 0.084 d
D3 704.8 29.3 d 0.086 b 710.3 29.0 d 0.086 b
D4 699.4 28.8 d 0.087 a 705.4 28.5 d 0.088 a
上部
Upper
D1 721.5 30.0 c 0.083 d 729.2 29.7 c 0.083 d
D2 710.6 29.7 d 0.085 c 715.7 29.4 d 0.085 c
D3 704.8 29.1 d 0.086 b 710.3 28.9 d 0.086 b
D4 699.4 28.5 d 0.088 a 705.4 28.2 d 0.088 a

表7

不同熟期品种玉米不同粒位籽粒Logistic power模型拟合结果"

年份
Year
品种
Hybrid
粒位
Grain
position
密度
Density
a b c 决定系数
R2
吐丝-含水率28%所需
有效积温
Effective accumulated temperature from silking to 28% MC (℃ d)
吐丝-含水率25%所需
有效积温
Effective accumulated
temperature from silking to 25% MC (℃ d)
2018
东单60
Dongdan 60
下部
Lower
D1 96.1 506.2 1.85 0.993 817.2 889.2
D2 95.7 508.9 1.97 0.994 796.3 862.2
D3 95.5 506.7 2.04 0.994 780.1 842.4
D4 95.3 504.6 2.09 0.995 767.7 827.6
上部
Upper
D1 94.5 525.1 2.17 0.995 782.3 841.1
D2 95.2 512.2 2.18 0.994 764.7 821.8
D3 94.9 512.2 2.27 0.994 751.7 805.6
D4 94.7 508.8 2.35 0.995 736.5 787.6
先玉335
Xianyu 335
下部
Lower
D1 93.7 521.7 1.99 0.995 800.6 866.7
D2 94.0 518.0 2.05 0.995 787.4 850.5
D3 93.9 512.5 2.11 0.995 768.9 828.6
D4 93.9 512.4 2.20 0.996 756.8 813.2
上部
Upper
D1 92.9 530.5 2.25 0.998 770.1 826.2
D2 93.4 527.6 2.34 0.996 758.3 811.5
D3 92.9 530.5 2.48 0.997 744.4 793.6
D4 93.1 523.9 2.56 0.997 728.1 774.5
2019 东单60
Dongdan 60
下部
Lower
D1 95.4 444.0 1.85 0.994 820.2 894.7
D2 95.1 446.5 1.97 0.995 798.8 866.8
D3 94.9 444.7 2.04 0.995 782.3 846.5
D4 94.6 442.9 2.09 0.996 769.7 831.4
上部
Upper
D1 93.9 460.8 2.17 0.995 784.8 845.5
D2 94.5 449.6 2.18 0.995 766.8 825.6
D3 94.3 449.8 2.27 0.995 753.6 809.0
D4 94.0 446.8 2.35 0.996 738.2 790.8
先玉335
Xianyu 335
下部
Lower
D1 93.1 457.3 1.98 0.995 803.8 872.3
D2 93.4 454.2 2.04 0.995 790.1 855.4
D3 94.4 444.2 2.07 0.995 771.3 833.0
D4 94.5 443.8 2.15 0.996 758.9 817.1
上部
Upper
D1 92.3 465.4 2.25 0.997 772.7 830.7
D2 92.8 463.0 2.33 0.996 760.7 815.5
D3 92.3 465.8 2.48 0.997 746.5 797.2
D4 92.5 460.2 2.57 0.998 729.7 777.6

图4

不同粒位籽粒灌浆参数与脱水速率相关性分析 A: 下部籽粒脱水与灌浆参数相关分析; B: 上部籽粒脱水与灌浆参数相关分析; Gmean: 平均灌浆速率, D: 活跃灌期; TDR: 总脱水速率; MCAPM: 生理成熟时籽粒含水率; ATFDTPM: 吐丝到生理成熟有效积温; 100KW: 百粒重。*表示在0.05水平上差异显著; **表示在0.01水平上差异显著。"

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
[2] Sango L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different area to change in plant density. Field Crops Res, 2002,79:39-51.
[3] Tokatlidis I S, Koutroubas S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004,88:103-114.
[4] Shen L X, Huang Y K, Li T. Top-grain filling characteristics at an early stage of maize (Zea mays L.) with different nitrogen use efficiencies. J Integr Agric, 2017,16:626-639.
[5] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019,45:1868-1879.
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019,45:1868-1879 (in Chinese with English abstract).
[6] Wang J T, Kang S Z, Du T S, Tong L, Ding R S, Li S E. Estimating the upper and lower limits of kernel weight under different water regimes in hybrid maize seed production. Agric Water Manag, 2019,213:128-134.
[7] 徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013,39:1452-1461.
Xu Y J, Gu J D, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013,39:1452-1461 (in Chinese with English abstract).
[8] Wei S S, Wang X Y, Li G H, Qin Y Y, Jiang D, Dong S T. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear position. Front Plant Sci, 2019,10:180.
pmid: 30881365
[9] 张巽, 郝建平, 王璞, 张萍, 陈璐洁. 灌浆期低温对离体培养玉米强弱势粒发育的影响. 中国农业科学, 2018,51:2263-2273.
Zhang Y, Hao J P, Wang P, Zhang P, Chen L J. Effects of low temperature on maize superior and inferior kernels development during grain filling in vitro. Sci Agric Sin, 2018,51:2263-2273 (in Chinese with English abstract).
[10] 李少昆, 王克如, 谢瑞芝, 明博. 机械粒收推动玉米生产方式转型. 中国农业科学, 2018,51:1842-1844.
Li S K, Wang K R, Xie R Z, Ming B. Grain mechanical harvesting technology promotes the transformation of maize production mode. Sci Agric Sin, 2018,51:1842-1844 (in Chinese with English abstract).
[11] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50:2036-2043.
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract).
[12] 乔江方, 李川, 刘京宝, 朱卫红, 夏来坤, 谷利敏, 黄璐. 夏玉米子粒含水率和子粒灌浆的粒位差异及其关系研究. 玉米科学, 2016,24(1):56-62.
Qiao J F, Li C, Liu J B, Zhu W H, Xia L K, Gu L M, Huang L. Grain position effect of maize grain moisture content and grain filling and their relationship. J Maize Sci, 2016,24(1):56-62 (in Chinese with English abstract).
[13] 万泽花, 任佰朝, 赵斌, 刘鹏, 董树亭, 张吉旺. 不同熟期夏玉米品种籽粒灌浆与脱水特性及其密度效应. 作物学报, 2018,44:1517-1526.
Wan Z H, Ren B Z, Zhao B, Liu P, Dong S T, Zhang J W. Grain filling and dehydration characteristics of summer maize hybrids differing in maturities and effect of plant density. Acta Agron Sin, 2018,44:1517-1526 (in Chinese with English abstract).
[14] 金益, 王振华, 张永林, 王殊华, 王云生. 玉米杂交种蜡熟后籽粒自然脱水速率差异分析. 东北农业大学学报, 1997,28(1):29-32.
Jin Y, Wang Z H, Zhang Y L, Wang S H, Wang Y S. Difference analysis on the natural dry rate of kernel after wax ripening in maize hybrids. J Northeast Agric Univ, 1997,28(1):29-32 (in Chinese with English abstract).
[15] 钱春荣, 王荣焕, 赵久然, 于洋, 郝玉波, 徐田军, 姜宇博, 宫秀杰, 李梁, 葛选良. 不同熟期玉米品种的籽粒灌浆特性及其与温度关系研究. 中国农业科技导报, 2017,19:105-114.
Qian C R, Wang R H, Zhao J R, Yu Y, Hao Y B, Xu T J, Jiang Y B, Gong X J, Li L, Ge X L. Study on the grain filling characteristics and their relationship with temperature of maize hybrids differing in maturities. J Agric Sci Technol, 2017,19(8):105-114 (in Chinese with English abstract).
[16] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014,47:3557-3565.
Wang X H, Zhang L, Liu S L, Cao Y J, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C. Grain filling characteristics of maize hybrids differing in maturities. Sci Agric Sin, 2014,47:3557-3565 (in Chinese with English abstract).
[17] Wang X Y, Wang X L, Xu C C, Tian W M, Wang P, Meng Q F. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Sci, 2019,59:1-12.
[18] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017,50:2061-2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize hybrids. Sci Agric Sin, 2017,50:2061-2070 (in Chinese with English abstract).
[19] Yan P, Chen Y Q, Sui P, Vogel A, Zhang X P. Effect of maize plant morphology on the formation of apical kernels at different sowing dates and under different plant densities. Field Crops Res, 2018,223:83-92.
[20] 严定春, 朱艳, 曹卫星. 水稻栽培适宜品种选择的知识模型. 南京农业大学学报, 2004,27(4):20-25.
Yan D C, Zhu Y, Cao W X. A knowledge model for selection of suitable variety in rice production. J Nanjing Agric Univ, 2004,27(4):20-25 (in Chinese with English abstract).
[21] 陈传永, 王荣焕, 赵久然, 徐田军, 王元东, 刘秀芝, 刘春阁, 裴志超, 成广雷, 陈国平. 不同生育时期遮光对玉米籽粒灌浆特性及产量的影响. 作物学报, 2014. 40:1650-1657.
Chen C Y, Wang R H, Zhao J R, Xu T J, Wang Y L, Liu X Z, Liu C G, Pei Z C, Cheng G L, Chen G P. Effects of shading on grain-filling properties and yield of maize at different growth stages. Acta Agron Sin, 2014,40:1650-1657
[22] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018,51:1878-1889.
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018,51:1878-1889 (in Chinese with English abstract).
[23] Zhang M, Chen T, Latifmanesh H, Feng X M, Cao T H, Qian C R, Deng A X, Song Z W, Zhang W J. How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China? J Integr Agric, 2018,17:1745-1757.
[24] Gonzalez V H, Tollenaar M, Bowman A, Good B, Lee E A. Maize yield potential and density tolerance. Crop Sci, 2018,58:472-485.
[25] 张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆. 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析. 中国农业科学, 2018,51:1890-1898.
Zhang W X, Ming B, Wang K R, Liu C W, Hou P, Chen J L, Zhang G Q, Yang J J, Che S L, Xie R Z, Li S K. Analysis of sowing and harvesting allocation of maize based on cultivar maturity and grain dehydration characteristics. Sci Agric Sin, 2018,51:1890-1898 (in Chinese with English abstract).
[26] 谢光辉, 杨建昌, 王志琴, 朱庆森. 水稻籽粒灌浆特性及其与籽粒生理活性的关系. 作物学报, 2006,27:557-565.
Xie G H, Yang J C, Wang Z Q, Zhu Q S. Grain filling characteristics of rice and their relationships to physiological activities of grains. Acta Agron Sin, 2006,27:557-565 (in Chinese with English abstract).
[27] Brenda L G, Lucas B, María E O. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2006,1:1-9.
[28] Gasura E, Setimela P, Edema R, Gibson P T, Okori P, Tarekegne A. Exploiting grain-filling rate and effective grain-filling duration to improve grain yield of early-maturing maize. Crop Sci, 2013,53:2295-2303.
[29] 方兴松. 种植密度对玉米籽粒灌浆及脱水特性的影响分析. 中国农业信息, 2014, (9):51.
Fang X S. Effect of planting density on grain filling and dehydration characteristics of maize. Chin Agric Inf, 2014, (9):51 (in Chinese).
[30] 王兵, 刘冬玲, 薛林, 张振良. 密度对玉米生理成熟后籽粒含水率及脱水速率的影响. 安徽农业科学, 2018,46(20):38-40.
Wang B, Liu D L, Xue L, Zhang Z L. Effects of planting density on kernel moisture content and dehydration rate after maize physiological maturity. J Anhui Agric Sci, 2018,46(20):38-40 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!