欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1425-1436.doi: 10.3724/SP.J.1006.2022.12029

• 耕作栽培·生理生化 • 上一篇    下一篇

粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制

郑小龙1,2(), 周菁清3, 白杨4, 邵雅芳2, 章林平2, 胡培松1,2, 魏祥进2,*()   

  1. 1江西农业大学农学院, 江西南昌 330045
    2中国水稻研究所, 浙江杭州 311400
    3浙江省生态环境监测中心,浙江杭州 310000
    4浙江环境监测工程有限公司, 浙江杭州 310015
  • 收稿日期:2021-04-26 接受日期:2021-10-19 出版日期:2022-06-12 网络出版日期:2021-11-25
  • 通讯作者: 魏祥进
  • 作者简介:E-mail: zhengxiaolonglj@126.com
  • 基金资助:
    中国农业科学院农业科技创新工程(CAASZDRW202011)

Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice

ZHENG Xiao-Long1,2(), ZHOU Jing-Qing3, BAI Yang4, SHAO Ya-Fang2, ZHANG Lin-Ping2, HU Pei-Song1,2, WEI Xiang-Jin2,*()   

  1. 1College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    2China National Rice Research Institute, Hangzhou 311400, Zhejiang, China
    3Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310000, Zhejiang, China
    4Zhejiang Environmental Monitoring Engineering Co. Ltd., Hangzhou 310015, Zhejiang, China
  • Received:2021-04-26 Accepted:2021-10-19 Published:2022-06-12 Published online:2021-11-25
  • Contact: WEI Xiang-Jin
  • Supported by:
    Agricultural Science and Technology Innovation Program of CAAS(CAASZDRW202011)

摘要:

为探讨粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制。将稻穗籽粒按一次枝梗在主穗上的节点划分为稻穗上部、中部和下部籽粒, 比较了嘉58等6个品种不同穗部籽粒成熟后的淀粉含量及垩白度等品质差异, 同时测定了不同穗部籽粒灌浆期游离糖与淀粉含量, 淀粉合成途径相关酶活, 相关基因表达量的动态变化。结果显示: 除秀水134外, 其余5个品种直链淀粉含量均表现为上部籽粒>中部>下部; 2个垩白度较高品种嘉58和中嘉8号则表现为上部籽粒垩白>下部>中部。扫描电镜观察发现不同垩白度籽粒中淀粉粒的大小和形状差异显著, 高垩白籽粒垩白部位淀粉粒普遍表现为半椭球形或其他曲面球形的形状, 淀粉粒排布比较疏散, 而低垩白籽粒对应部位的淀粉粒外形多为规则多面体, 淀粉粒排布相对紧密。不同品种及部位籽粒在灌浆期内蔗糖、葡萄糖和果糖含量差异较大, 但蔗糖含量动态变化均为先下降后微微上升, 葡萄糖和果糖则基本表现为先上升后下降。淀粉合成相关催化酶中蔗糖转化酶(Invertase)和ADPG焦磷酸化酶(AGPase)的活性在不同部位间的差异最为显著, 其中, AGPase在整个灌浆期内均表现为上部>中部>下部, 而Invertase前期表现为上部<中部<下部, 后期完全相反。编码Invertase的OsCIN2OsCIN5基因在不同穗部籽粒中的表达量均表现为中部籽粒>下部>上部, 而编码AGPase的OsAGPL1OsAGPL2OsAGPs1a基因均表现为上部籽粒>中部≈下部。不同穗部籽粒的直链淀粉含量与垩白度存在不同程度的差异, 同时也受品种本身的影响。游离糖含量、淀粉合成相关酶活和编码相关酶的基因表达对淀粉合成均有影响。OsCIN2、OsCIN5、OsAGPL1、OsAGPL2、OsAGPs1a等基因在决定不同穗部籽粒的淀粉含量与垩白品质差异上起着重要作用。

关键词: 水稻, 不同穗部籽粒, 垩白度, 直链淀粉含量, 可溶性碳水化合物, 酶活

Abstract:

This study investigated the mechanism of starch and rice quality differences on different parts of spikelet in japonica rice. According to the internodes of the primary stem on main panicle, rice grains on the panicles were divided into top, middle, and the bottom spikelets. The dynamic changes of soluble carbohydrate and starch, starch biosynthesis related enzyme activity, gene expression on different parts of panicles at different filling stage and the starch content, chalkiness degree after harvest of six varieties were measured. The results showed that the amylose content of the five varieties was in an order as top > middle > bottom except Xiushui 134. The chalkiness degree of Jia 58 and Zhongjia 8 was higher than the other varieties, and the chalkiness degree of rice grains on the middle part of panicles was lower than that on the bottom part, and the rice grains on the top part had the highest chalkiness degree. Rice grains of high chalkiness degree had significant difference in starch granules size and shape. We found that the shape of starch granules was semi-ellipsoid or other spherical curved in rice grains with high chalkiness degree and mostly regular polyhedra in rice grains with low chalkiness degree. The contents of sucrose, glucose, and fructose in grains of different varieties and parts were different during grain filling period, but the dynamic changes of sucrose content were first decreased and then slightly increased, while glucose and fructose were basically increased first and then decreased. The contents of invertase and AGPase were significantly different among rice grains on top, middle, and bottom parts of panicles. However, the relative expression levels of AGPase were in an order as top > middle > bottom during the whole filling stage. The relative expression levels of invertase were in an order as top < middle < bottom during the early filling stage, and the rule was completely the opposite at late filling stage. The expression levels of OsCIN2 and OsCIN5 encoding sucrose invertase genes were in an order as middle > bottom > top, and the expression levels of OsAGPL1, OsAGPL2, and OsAGPS1a encoding AGPase genes were in an order as top > middle ≈ bottom. It concluded that the amylose content and chalkiness degree of grains in different panicles had significant difference and also affected by varieties. The content of soluble carbohydrate, starch biosynthesis related enzyme activity, and the gene expression of encoding related enzymes had an effect on starch biosynthesis. The genes of OsCIN2, OsCIN5, OsAGPL1, OsAGPL2, and OsAGPS1a played an important role in the difference of starch content and chalkiness degree in different panicles.

Key words: rice, different spikelet of the grain, chalkiness degree, amylase content, soluble carbohydrate, enzymic activity

图1

常规粳稻稻穗结构模式图 1~10: 一次枝梗自上而下在稻穗上的顺序; TS: 上部3个枝梗上的所有籽粒; BS: 下部3个枝梗上的所有籽粒; MS: 中间剩余枝梗上的所有籽粒。"

表1

20个淀粉合成相关酶基因实时荧光定量PCR扩增的特异引物序列"

基因名称
Gene name
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reserve sequence (5'-3')
AGPL1 CATCAAGGACGGGAAGGTCA ACTTCACTCGGGGCAGCTTA
AGPL2 CTGAGGAAGAGGTGCTTTGG TCTTTCGGGAGGATTGTGTC
AGPS2a AGAATGCTCGTATTGGAGAAAATG GGCAGCATGGAATAAACCAC
AGPS2b AGTAGTGGGACTCCGGTCCT ATGCCACCTTTTTCACCAAG
BEI GGCATTGCACTCCAAAAGAT GCTCCAGTTGTTGCCTTCTC
BEIIa GCCAATGCCAGGAAGATGA GCGCAACATAGGATGGGTTT
BEIIb ATGCTAGAGTTTGACCGC AGTGTGATGGATCCTGCC
GBSS1 TCCGAGAGGTTCAGGTCATC ATGAGCTCCTCGGCGTAGTA
GBSS2 AAACGGGCTCTGAAGCAGTA CTCCTCCCACTTCTTTGCAG
ISA1 TGCTCAGCTACTCCTCCATCATC AGGACCGCACAACTTCAACATA
ISA2 TAGAGGTCCTCTTGGAGG AATCAGCTTCTGAGTCACCG
OsCIN2 GACACGGACATCACCAACG ACAAGGGGGCATGATTTAGC
OsCIN5 CTGATCCTTTTGACCCTTCC TGTGTTGCTCTCTTGTTTCC
OsVIN2 CAATGGAAGATGATGAATGG CATGTATAAAAGGGACTCTGC
SSI TCATGGATGTGAAGGAGCAA TGGCAGTGAACCACAAACAT
SSIIa GATCGACCAGGATGACGATT GGGTAAAGCACCTGCAACAT
SSIIc CGTGGCCCATTAGATGACTT CAGTAAGCAAACGGTCAGCA
Susy1 AATGGTATCCTCCGCAAGTG GGCTTGCATTTCCCTCATAA
Susy2 GCTGAAGGACAGGAACAAGC CACCACAGACAACCACAAGG
Susy3 CATGTACCCCCTGCTCAACT GTCAGCTGTAATGCCTGCAA

图2

稻穗不同部位籽粒垩白及淀粉表现情况 TS: 上部籽粒; MS: 中部籽粒; BS: 下部籽粒。J58: 嘉58; J67: 嘉67; Z99: 浙粳99; X121: 秀水121; X134: 秀水134; Z8: 中嘉8号。(a): 6个品种不同部位垩白度; (b): J58与X134垩白水平样照; (c)、(d)分别代表不同部位成熟籽粒直链淀粉、总淀粉含量。不同字母代表P < 0.05 水平差异显著。"

图3

稻米自然横断面扫描电镜分析 (a~c): 分别代表J58上部、中部、下部籽粒自然横断面扫描电镜图; (d~f): 分别代表X134上部、中部、下部籽粒自然横断面扫描电镜图。标尺为3 μm。"

图4

稻穗不同部位籽粒可溶性蔗糖含量动态变化及差异 WAFH: 齐穗后周数; 不同字母代表P < 0.05水平差异显著。"

图5

稻穗不同部位籽粒可溶性葡萄糖与果糖含量动态变化及差异 WAFH: 齐穗后周数; 不同字母代表P < 0.05水平差异显著。"

图6

稻穗不同穗部籽粒直链淀粉与支链淀粉含量动态变化及差异 WAFH: 齐穗后周数; 不同字母代表P < 0.05水平差异显著。"

图7

不同部位淀粉合成相关酶活性差异 TS-2W: 齐穗第2周上部籽粒; MS-2W: 齐穗第2周中部籽粒; BS-2W: 齐穗第2周下部籽粒; TS-5W: 齐穗第5周上部籽粒; MS-5W: 齐穗第5周中部籽粒; BS-5W: 齐穗第5周下部籽粒。不同字母代表P < 0.05水平差异显著。"

图8

不同部位籽粒淀粉合成相关基因的相对表达量 SUSy1、SUSy2、SUSy3: 蔗糖合成酶基因; OsCIN2、OsCIN5、OsNIN2: 淀粉转化酶基因; AGPL1、AGPL2、AGPs1a、AGPs1b: ADPG葡萄糖焦磷酸化酶基因; ISA1和ISA2: 淀粉去分支酶基因; BEI、BEIIa、BEIIb: 淀粉分支酶基因; GBSS1、GBSS2: 颗粒结合淀粉合酶基因; SSI、SSIIa、SSIIc: 淀粉合酶基因。不同字母代表P < 0.05水平差异显著。"

[1] Kusano M, Yang Z, Okazaki Y, Nakabayashi R, Fukushima A, Saito K. Using metabolomic approaches to explore chemical diversity in rice. Mol Plant, 2015, 8: 58-67.
doi: 10.1016/j.molp.2014.11.010
[2] 王丰, 程方民. 从籽粒灌浆过程上讨论水稻粒间品质差异形成的生理机制. 种子, 2004, 23(1):31-35.
Wang F, Cheng F M. Discussion on the physiological mechanism of quality diversity among different location grains on basis of grain filling process. Seed, 2004, 23(1):31-35 (in Chinese with English abstract).
[3] 张佩莲, 钟旭华, 曾宪江, 徐益群. 穗上不同部位籽粒的稻米垩白度差异的研究. 江西农业大学学报, 1995, 17: 396-399.
Zhang P L, Zhong X H, Zeng X J, Xu Y Q. A study on the difference in the chalk degree of the grains in a panicle. Acta Agric Univ Jiangxiensis, 1995, 17: 396-399 (in Chinese with English abstract).
[4] 董明辉, 桑大志, 王朋, 王学明, 杨建昌. 不同施氮水平下水稻穗上不同部位籽粒的蒸煮与营养品质变化. 中国水稻科学, 2006, 20: 389-395.
Dong M H, Sang D Z, Wang P, Wang X M, Yang J C. Changes in cooking and nutritional qualities of grains at different positions within a rice panicle under different nitrogen levels. Chin J Rice Sci, 2006, 20: 389-395 (in Chinese with English abstract).
[5] Nagato K. Differences in grain weight of spikelets located at different positions within a rice panicle. Jpn J Crop Sci, 1941, 13: 156-169.
doi: 10.1626/jcs.13.156
[6] Kido M, Yanatori S. Studies on positions in panicle of ventral white, basal white, milky white like white core and milky white kernel sand shapes of white opaque parts in these kernels. Jpn J Crop Sci, 2008, 37: 534-538.
doi: 10.1626/jcs.37.534
[7] 张小明, 石春海, 堀内久满, 富田桂, 鲍根良, 冯水英, 叶胜海. 粳稻穗部不同部位米粒直链淀粉含量的差异分析. 作物学报, 2002, 28: 99-103.
Zhang X M, Shi C H, Hisamitsu H, Fu T G, Bao G L, Feng S Y, Ye S H. The differences of grain amylose contents in different panicle parts of japonica rice variety. Acta Agron Sin, 2002, 28: 99-103 (in Chinese with English abstract).
[8] 陈书强, 金峰, 董丹, 刘柏林, 薛菁芳, 张文忠, 徐正进, 陈温福. 两种穗型粳稻穗上不同粒位籽粒几个营养和蒸煮品质性状的比较分析. 作物学报, 2008, 34: 641-652.
doi: 10.3724/SP.J.1006.2008.00641
Chen S Q, Jin F, Dong D, Liu B L, Xue J F, Zhang W Z, Xu Z J, Chen W F. Comparisons of several nutritional and cooking qualities of grains at different grain positions of panicle between two panicle types of japonica rice. Acta Agron Sin, 2008, 34: 641-652 (in Chinese with English abstract).
[9] 俞聪慧, 贾琰, 孙立超, 雷蕾, 杨雅娜, 王晋, 杨亮, 赵宏伟. 优化施肥促进寒地粳稻可溶性糖积累转运、气候资源利用及产量形成. 植物营养与肥料学报, 2021, 27: 231-242.
Yu C H, Jia Y, Sun L C, Lei L, Yang Y N, Wang J, Yang L, Zhao H W. Enhancing accumulation and translocation of soluble sugar and utilization rate of climatic resources in japonica rice in cold region through optimized fertilization. Plant Nutr Fert Sci, 2021, 27: 231-242 (in Chinese with English abstract).
[10] 罗霄, 郑国琦, 王俊. 果实糖代谢及其影响因素的研究进展. 农业科学研究, 2008, 29(2):69-74.
Luo X, Zheng G Q, Wang J. Advances in research on sugar metabolism and its influencing factor in fruits. J Agric Sci, 2008, 29(2):69-74 (in Chinese with English abstract).
[11] 付景, 徐云姬, 陈露, 袁莉民, 王志琴, 杨建昌. 超级稻花后强、弱势粒淀粉合成相关酶活性和激素含量变化及其与籽粒灌浆的关系. 中国水稻科学, 2012, 26: 302-310.
Fu J, Xu Y J, Chen L, Yuan L M, Wang Z Q, Yang J C. Post-anthesis changes in activities of enzymes related to starch synthesis and contents of hormones in superior and inferior spikelets and their relation with grain filling of super rice. Chin J Rice Sci, 2012, 26: 302-310 (in Chinese with English abstract).
[12] Ji X, Ende W, Laere A V, Cheng S, Bennett J. Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol, 2005, 60: 615-634.
doi: 10.1007/s00239-004-0242-1
[13] Oiestad A J, Martin J M, Giroux M J. Yield increases resulting from AGPase overexpression in rice are reliant on plant nutritional status. Plant Growth Regul, 2019, 89: 179-190.
doi: 10.1007/s10725-019-00525-y
[14] Subbian S, Narayanan S. Replacement of the endogenous starch debranching enzymes ISA1 and ISA2 of Arabidopsis with the rice orthologs reveals a degree of functional conservation during starch synthesis. Can J Microbiol, 2007, 53: 599.
doi: 10.1139/W06-147
[15] 陈新红, 叶玉秀, 孟庆东. 不同氮肥与密度下水稻穗上籽粒垩白度的差异. 中国农学通报, 2010, 26(6):110-114.
Chen X H, Ye Y X, Meng Q D. Difference in chalkiness degree of the grains within a rice panicle under different nitrogens and densities. Chin Agric Sci Bull, 2010, 26(6):110-114 (in Chinese with English abstract).
[16] Liu Q, Wu X, Ma J, Xin C. Effects of cultivars, transplanting patterns, environment, and their interactions on grain quality of japonica rice. Cereal Chem, 2015, 92: 284-292.
doi: 10.1094/CCHEM-09-14-0194-R
[17] 吴艳珍. 高CO2浓度对超级稻稻穗不同位置籽粒结实能力和品质性状的影响. 扬州大学博士学位论文, 江苏扬州, 2017. pp 38-44.
Wu Y Z. Effects of Elevated CO2 Concentration on Grain Filling Capacity and Quality Traits of Grains at Different Positions on the Panicle of Super Rice. PhD Dissertation of Graduate School of Yangzhou University, Yangzhou, Jiangsu, China, 2017. pp 38-44 (in Chinese with English abstract).
[18] Okada M, Iizumi T, Hayashi Y, Yokozawa M. Modeling the multiple effects of temperature and radiation on rice quality. Environ Res Lett, 2011, 6: 1-8.
[19] Vandeputte G E, Delcour J A. From sucrose to starch granule to starch physical behavior: a focus on rice starch. Carbohyd Polym, 2004, 58: 245-266.
doi: 10.1016/j.carbpol.2004.06.003
[20] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-192.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis of rice grain filling. Acta Agron Sin, 1988, 14: 182-192 (in Chinese).
[21] 陈孙禄, 詹成芳, 蒋红, 李琳涵, 张红生. 水稻籽粒灌浆速率的分子机制与遗传调控研究进展. 植物学报, 2021, 56: 80-89.
Chen S L, Zhan C F, Jiang H, Li L H, Zhang H S. Advances in the molecular mechanism and genetic regulation of grain-filling rate in rice. Chin Bull Bot, 2021, 56: 80-89 (in Chinese with English abstract).
[22] Pandey M K, Rani N S, Madhav M S, Sundaram R M, Varaprasad G S, Sivaranjani A K P, Bohra A, Kumar G R, Kumar A. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol Adv, 2012, 30: 1697-1706.
doi: 10.1016/j.biotechadv.2012.08.011
[23] 张青, 孟杉杉, 陈梓春, 王远江, 韦存虚, 王娟. 谷物胚乳淀粉合成相关酶的调控机制研究进展. 植物生理学报, 2021, 57: 1-11.
Zhang Q, Meng S S, Chen Z C, Wang Y J, Wei C X, Wang J. Progress of regulation mechanism of starch biosynthesis related enzymes in cereal endosperm. Acta Phytophysiol Sin, 2021, 57: 1-11 (in Chinese with English abstract).
[24] 陈雅玲, 包劲松. 水稻胚乳淀粉合成相关酶的结构、功能及其互作研究进展. 中国水稻科学, 2017, 31: 1-12.
Chen Y L, Bao J S. Progress in structures, functions and interactions of starch synthesis related enzymes in rice endosperm. Chin J Rice Sci, 2017, 31: 1-12 (in Chinese with English abstract).
[25] 王志琴, 叶玉秀, 杨建昌, 袁莉民, 王学明, 朱庆森. 水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节. 作物学报, 2004, 30: 634-643.
Wang Z Q, Ye Y X, Yang J C, Yuan L M, Wang X M, Zhu Q S. Changes and regulations of sucrose synthase activity in rice grains during grain filling. Acta Agron Sin, 2004, 30: 634-643 (in Chinese with English abstract).
[26] 王志东, 周少川, 王重荣, 陈宜波, 李宏, 黄道强, 周德贵, 龚蓉, 赵雷, 吴玉坤, 潘阳阳, 杨义强. 不同直链淀粉含量籼稻食味品质与其他品质性状的关系. 中国稻米, 2021, 27(1):38-44.
Wang Z D, Zhou S C, Wang C R, Chen Y B, Li H, Huang D Q, Zhou D G, Gong R, Zhao L, Wu Y K, Pan Y Y, Yang Y Q. Relationship between eating quality and other quality traits of indica rice with different amylose content. China Rice, 27(1):38-44 (in Chinese with English abstract).
[27] 李培德, 朴钟泽, 张建明, 王士梅. 稻穗不同部位籽粒垩白程度变异分析. 中国农学通报, 2006, 22(9):130-133.
Li P D, Piao Z Z, Zhang J M, Wang S M. Genetic variance of chalkiness of different grain positions in a panicle. Chin Agric Sci Bull, 2006, 22(9):130-133 (in Chinese with English abstract).
[28] 赵杰堂. 蔗糖转化酶在高等植物生长发育及胁迫响应中的功能研究进展. 热带亚热带植物学报, 2016, 24: 352-358.
Zhao J T. Advances in research on invertase in plant development and response to abiotic and biotic stresses. J Trop Subtrop Bot, 2016, 24: 352-358 (in Chinese with English abstract).
[29] 邓舒雅, 麦贻婷, 陈惠萍, 钮俊. 无籽蜜柚蔗糖合成酶(SUS)和蔗糖转化酶(INV)基因家族生物信息学及表达分析. 植物生理学报, 2018, 54: 1576-1586.
Deng S Y, Mai Y T, Chen H P, Niu J. Bioinformatics and expression analysis of the sucrose synthase (SUS) and invertase (INV) gene families in citrus grandis “Seedless”. J Plant Physiol, 2018, 54: 1576-1586 (in Chinese with English abstract).
[30] 章燕柳, 穆海蓉, 邵在胜, 王云霞, 景立权, 王余龙, 杨连新. 臭氧胁迫对稻穗不同部位糙米直链淀粉含量和RVA谱特征值的影响. 应用生态学报, 2019, 30: 4211-4221.
Zhang L Y, Mu H R, Shao Z S, Wang Y X, Jing L Q, Wang Y L, Yang L X. Effects of ozone stress on amylose content and starch RVA profile in grains located at different positions on a panicle. Chin J Appl Ecol, 2019, 30: 4211-4221 (in Chinese with English abstract).
[31] 陆艳婷, 张小明, 叶胜海, 祁永斌, 金庆生. 密穗型和散穗型粳稻穗部不同部位直链淀粉含量的差异分析. 中国水稻科学, 2007, 21: 391-395.
Lu Y T, Zhang X M, Ye S H, Qi Y B, Jin Q S. Differences of grain amylose contents at different positions within a panicle between the compact- and loose-panicle rice varieties. Chin J Rice Sci, 2007, 21: 391-395 (in Chinese with English abstract).
[32] 谢光辉, 杨建昌, 王志琴, 朱庆生. 水稻籽粒灌浆特性及其与籽粒生理活性的关系. 作物学报, 2001, 27: 557-565.
Xie G H, Yang J C, Wang Z Q, Zhu Q S. Grain filling characteristics of rice and their relationships to physiological activities of grains. Acta Agron Sin, 2001, 27: 557-565 (in Chinese with English abstract).
[33] 陆彦, 张晓敏, 祁琰, 张昌泉, 凌裕平, 刘巧泉. 不同透明度水稻籽粒横断面扫描电镜分析. 中国水稻科学, 2018, 32: 189-199.
Lu Y, Zhang X M, Qi Y, Zhang C Q, Ling Y P, Liu Q Q. Scanning electron microscopic analysis of grain cross-section from rice with different transparency. Chin J Rice Sci, 2018, 32: 189-199 (in Chinese with English abstract).
[34] 常红叶, 康海岐, 傅华龙, 唐薇薇, 邓禹, 刘佳, 兰利琼. 不同水稻品种(系)的垩白差异及胚乳细胞学结构研究. 四川大学学报(自然科学版), 2006, 43: 927-932.
Chang H Y, Kang H Q, Fu H L, Tang W W, Deng Y, Liu J, Lan L Q. Studies on chalkiness variance and endosperm cytological structures of rice kernel in different rice varieties (lines). J Sichuan Univ (Nat Sci Edn), 2006, 43: 927-932 (in Chinese with English abstract).
[35] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Sci, 1992, 82: 15-20.
doi: 10.1016/0168-9452(92)90003-5
[36] 赵颖, 朱高倩, 孙朝华, 金寿林, 谭学林. 水稻AGPase小亚基基因的克隆测序及种质间遗传分化的研究. 分子植物育种, 2012, 10: 559-567.
Zhao Y, Zhu G Q, Sun C H, Jin S L, Tan X L. Cloning and sequencing of rice ADP-glucose pyrophosphorylase small subunit gene and study on genetic transformation among germplasm. Mol Plant Breed, 2012, 10: 559-567 (in Chinese with English abstract).
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[6] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[7] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[8] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[9] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[10] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[15] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!