欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1437-1450.doi: 10.3724/SP.J.1006.2022.13022

• 耕作栽培·生理生化 • 上一篇    下一篇

长江中游双季玉米种植模式周年气候资源分配与利用特征

王丹1,2(), 周宝元1, 马玮1, 葛均筑3, 丁在松1, 李从锋1, 赵明1,*()   

  1. 1中国农业科学院作物科学研究所 / 农业农村部作物生理生态与栽培重点开放实验室, 北京100081
    2通辽市农业科学研究院玉米研究所, 内蒙古通辽028042
    3天津农学院农学与资源环境学院, 天津 300384
  • 收稿日期:2021-03-15 接受日期:2021-10-19 出版日期:2022-06-12 网络出版日期:2021-11-20
  • 通讯作者: 赵明
  • 作者简介:E-mail: wangdansyau@126.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-02-12);国家重点研发计划项目(2016YFD0300207)

Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River

WANG Dan1,2(), ZHOU Bao-Yuan1, MA Wei1, GE Jun-Zhu3, DING Zai-Song1, LI Cong-Feng1, ZHAO Ming1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Production, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Institute of Maize Science, Tongliao Academy of Agricultural Sciences, Tongliao 028042, Inner Mongolia, China
    3College of Agronomy &Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
  • Received:2021-03-15 Accepted:2021-10-19 Published:2022-06-12 Published online:2021-11-20
  • Contact: ZHAO Ming
  • Supported by:
    China Agriculture Research System(CARS-02-12);National Key Research and Development Program of China(2016YFD0300207)

摘要:

探明长江中游双季玉米不同类型品种搭配模式的周年产量及气候资源分配与利用特征, 可为该地区双季玉米种植模式应用和发展提供理论依据。本研究于2015—2017年在湖北武穴开展定位试验, 定量研究了双季玉米不同品种搭配模式的周年产量、生物量及光温水资源分配与利用效率。结果表明, 不同品种搭配模式[低积温品种-高积温品种(the low GDD variety-high GDD variety, LH)、中积温品种-中积温品种(the medium GDD variety-medium GDD variety, MM)、中积温品种-高积温品种(the medium GDD variety-high GDD variety, MH)和高积温品种-中积温品种(the high GDD variety-medium GDD variety, HM)], 两季间光温资源分配差异较大, HM搭配模式第一季和周年积温和辐射分配量显著高于MM、MH和LH搭配模式, 而第二季积温和辐射分配量显著低于其他模式; HM模式第一季积温和辐射分配率分别为49%和52%, 第二季积温和辐射分配率分别为46%和44%, 两季积温和辐射比值分别为1.1和1.2。4种搭配模式季节间及周年降水量无显著差异。不同品种搭配模式季节间光温资源分配差异导致产量和生物量变化较大, 由于HM搭配模式两季光温分配与玉米生长需求匹配度较高, 其周年产量、干物质积累量均显著高于MM、MH和LH, 3年平均增幅分别为8.4%~24.5%和9.7%~29.6%; HM周年光温生产效率、籽粒及总生物量光能利用效率均显著高于MM、MH和LH, 其中周年积温生产效率平均增幅2.9%~14.3%, 周年辐射生产效率平均增幅5.5%~18.4%, 籽粒及总生物量光能利用效率分别提高0.05%~0.16%和0.16%~0.39%。通过产量和资源利用效率分析, HM搭配模式可作为长江中游地区双季玉米高产高效种植最佳的品种搭配方式, 为该地区双季玉米种植模式的大面积应用推广及种植结构优化调整提供理论依据和技术支撑。

关键词: 双季玉米, 品种搭配, 资源分配, 产量, 资源利用效率

Abstract:

Clarifying the characteristics of annual yield, distribution, and utilization of climatic resources, and establishing rational quantitative indexes of annual climatic resource distribution are helpful to provide theoretical basis for establishing the double maize cropping system. In this study, to analyze the annual grain yield, biomass, and distribution and utilization efficiency of climate resource of double maize cropping system with different variety collocation, the experiment was conducted from 2015 to 2017 at Wuxue, Hubei province. The distribution and utilization of climatic resource of different variety collocation was different. The accumulative temperature and radiation distribution rate of HM in the first season and annual were significantly higher than the other variety collocation, but on the contrary in the second season. The accumulative temperature and radiation distribution rate for the first season of HM was 49% and 52%, respectively. The accumulative temperature and radiation distribution rate for the second season of HM was 46% and 44%. The accumulative ratio of temperature and radiation between two seasons of HM was 1.1 and 1.2. The precipitation distribution rate of two seasons and annual among the four variety collocations were no significantly different. The difference of the accumulative temperature and radiation among different variety collocations resulted in the changes of grain yield and biomass. Because of a high matching degree between the distribution of climatic resource and the growth demand of maize in HM. The annual grain yield and total biomass of HM were significantly higher than those of the MM, MH, and LH, with an average increase of 8.4%-24.5% and 9.7%-29.6%, respectively. The annual accumulative temperature and radiation, radiation use efficiency of grain, and total biomass of HM were significantly higher than those of the MM, MH, and LH, with an average increase of 2.9%-14.3% in the annual accumulative temperature production efficiency, 5.5%-18.4% in the annual radiation production efficiency, 0.05%-0.16% and 0.16%-0.39% increase in the radiation use efficiency of grain and total biomass, respectively. Considering both yield and resource use efficiency, HM can be used as the best variety collocation for high yield and high efficiency of double maize system in the middle reaches of Yangtze River. Furthermore, this is helpful to extend double maize cropping system, optimize the layout of planting patterns, provide theoretical basis and important support the sustainable development of agricultural production.

Key words: double maize cropping system, variety collocation, resource distribution, yield, resource use efficiency

图1

2015-2017年玉米生长季气象因素变化"

图2

玉米播种厢沟模式"

表1

双季玉米不同品种搭配模式品种和播收期"

搭配模式
Combination
品种及有效积温
Variety and GDD
播期
Sowing date (month/day)
成熟期
Maturity date
(month/day)
第一季
First season
第二季
Second season
第一季
First season
第二季
Second season
第一季
First season
第二季
Second season
低+高LH 兴垦6 Xingken 6 1299℃ 浚单22 Xundan 22 1479℃ 3/8 7/7 7/7 11/3
德美亚2号Demeiya 2 1282℃ 郑单958 Zhengdan 958 1479℃
中+中MM 郑单958 Zhengdan 958 1434℃ 吉祥1 Jixiang 1 1441℃ 3/8 7/16 7/16 11/4
吉单27 Jidan 27 1365℃ 联创3 Lianchuang 3 1437℃
中+高MH 郑单958 Zhengdan 958 1434℃ 浚单22 Xundan 22 1479℃ 3/8 7/16 7/16 11/9
吉单27 Jidan 27 1365℃ 郑单958 Zhengdan 958 1479℃
高+中HM 荃玉9号Quanyu 9 1515℃ 吉祥1 Jixiang 1 1441℃ 3/8 7/23 7/23 11/1
仲玉3号Zhongyu 3 1520℃ 联创3 Lianchuang 3 1437℃

图3

2015-2017年双季玉米适宜搭配模式产量 First season: 第一季; Second season: 第二季; LH: 低积温品种-高积温品种; MM: 中积温品种-中积温品种; MH: 中积温品种-高积温品种; HM: 高积温品种-中积温品种; 小写字母表示第一季和第二季的差异达0.05显著水平, 大写字母表示第一季和第二季之和的差异达0.05显著水平。"

图4

2015-2017年双季玉米适宜搭配模式干物质积累 First season: 第一季; Second season: 第二季; LH: 低积温品种-高积温品种; MM: 中积温品种-中积温品种; MH: 中积温品种-高积温品种; HM: 高积温品种-中积温品种; 小写字母表示第一季和第二季的差异达0.05显著水平, 大写字母表示第一季和第二季之和的差异达0.05显著水平。"

表2

2015-2017年双季玉米不同搭配模式季节间积温分配"

年份
Year
组合
Combination
第一季First season 第二季Second season 周年Annual
积温量
AT (℃)
分配率
TDR (%)
积温量
AT (℃)
分配率
TDR (%)
积温量
AT (℃)
两季比
TR
2015 LH 2358 43 2626 47 4984 0.9
MM 2536 46 2604 47 5140 1.0
MH 2536 46 2690 49 5227 0.9
HM 2676 48 2635 48 5311 1.0
2016 LH 2329 42 2652 47 4981 0.9
MM 2575 46 2631 47 5206 1.0
MH 2575 46 2666 48 5242 1.0
HM 2770 49 2533 45 5302 1.1
2017 LH 2301 41 3005 54 5306 0.8
MM 2575 46 2644 48 5219 1.0
MH 2575 46 2702 49 5277 1.0
HM 2815 51 2545 46 5360 1.1
平均值
Mean
LH 2329 c 42 c 2761 a 50 a 5090 c 0.8 c
MM 2562 b 46 b 2626 bc 47 bc 5189 b 1.0 b
MH 2562 b 46 b 2686 b 48 b 5248 b 1.0 b
HM 2753 a 49 a 2571 c 46 c 5324 a 1.1 a

表3

2015-2017年不同搭配模式季节间辐射分配"

年份
Year
组合
Combination
第一季First season 第二季Second season 周年Annual
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
两季比
RR
2015 LH 1438 43 1652 49 3090 0.9
MM 1529 46 1624 48 3153 0.9
MH 1529 46 1645 49 3174 0.9
HM 1597 48 1613 48 3211 1.0
2016 LH 1488 43 1709 50 3198 0.9
MM 1649 48 1622 47 3271 1.0
MH 1649 48 1630 47 3279 1.0
HM 1779 52 1537 45 3316 1.2
2017 LH 1650 46 1709 48 3359 1.0
MM 1795 50 1549 43 3344 1.2
MH 1795 50 1598 45 3394 1.1
HM 1998 56 1451 41 3449 1.4
平均值
Mean
LH 1525 c 44 c 1690 a 49 a 3215 b 0.9 c
MM 1658 b 48 b 1598 b 48 b 3256 b 1.0 b
MH 1658 b 48 b 1625 b 46 b 3282 ab 1.0 b
HM 1792 a 52 a 1534 c 44 c 3325 a 1.2 a

表4

2015-2017年不同搭配模式季节间降雨量分配"

年份
Year
组合
Combination
第一季First season 第二季Second season 周年Annual
降雨量
Pr (mm)
分配率
PDR (%)
降雨量
Pr (mm)
分配率
PDR (%)
降雨量
Pr (mm)
两季比
PR
2015 LH 455 62 166 22 621 2.7
MM 460 62 182 25 642 2.5
MH 460 62 234 32 695 2.0
HM 472 64 233 32 705 2.0
2016 LH 1061 63 414 25 1475 2.6
MM 1170 70 389 23 1560 3.0
MH 1170 70 404 24 1574 2.9
HM 1206 72 401 24 1607 3.0
2017 LH 687 63 446 41 1133 1.5
MM 763 70 281 26 1044 2.7
MH 763 70 281 26 1044 2.7
HM 763 70 281 26 1044 2.7
平均值
Mean
LH 734 a 63 b 342 a 30 a 1076 a 2.3 b
MM 798 a 68 a 284 a 25 b 1082 a 2.8 a
MH 798 a 68 a 306 a 27 ab 1104 a 2.5 ab
HM 814 a 69 a 305 a 27 ab 1119 a 2.6 a

图5

玉米籽粒产量与气象因子的关系 A、B、C为第一季玉米籽粒产量与气象因子的关系; D、E、F为第二季玉米籽粒产量与气象因子的关系; L: 低积温品种; M: 中积温品种; H: 高积温品种。*: P = 0.05; **: P = 0.01。"

表5

2015-2017年双季玉米不同品种搭配模式光、温和水资源生产效率"

年份
Year
组合
Combination
温度生产效率
Production efficiency of AT
(kg hm-2 °C-1)
光能生产效率
Production efficiency of Ra
(g MJ-1)
降水生产效率
Production efficiency of Pr
(kg hm-2 mm-1)
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
2015 LH 3.56 4.55 4.08 0.58 0.72 0.66 18.4 71.9 32.7
MM 3.86 4.55 4.21 0.64 0.73 0.69 21.3 65.2 33.7
MH 3.86 4.44 4.16 0.64 0.73 0.68 21.3 51.1 31.3
HM 3.97 4.50 4.23 0.66 0.73 0.70 22.5 50.8 31.9
2016 LH 2.16 2.83 2.52 0.34 0.44 0.39 4.7 18.1 8.5
MM 2.14 3.46 2.80 0.33 0.56 0.45 4.7 23.4 9.4
MH 2.14 3.32 2.74 0.33 0.54 0.44 4.7 21.9 9.1
HM 2.23 3.47 2.83 0.36 0.64 0.49 5.3 24.5 10.1
2017 LH 2.98 2.40 2.65 0.42 0.42 0.42 10.0 16.2 12.4
MM 2.97 3.55 3.26 0.43 0.61 0.51 10.0 33.4 16.3
MH 2.97 3.31 3.14 0.43 0.56 0.49 10.0 31.8 15.9
HM 3.09 3.95 3.50 0.44 0.69 0.54 11.4 35.7 18.0
平均值
Mean
LH 2.90 c 3.26 c 3.08 c 0.44 b 0.53 c 0.49 c 11.1 a 35.4 a 17.9 a
MM 2.99 b 3.85 b 3.42 b 0.47 a 0.63 b 0.55 b 12.0 a 40.7 a 19.8 a
MH 2.99 b 3.69 b 3.35 b 0.47 a 0.61 b 0.54 b 12.0 a 34.9 a 18.8 a
HM 3.10 a 3.97 a 3.52 a 0.49 a 0.69 a 0.58 a 13.1 a 37.0 a 20.0 a

表6

2015-2017年不同搭配模式光能利用效率"

年份
Year
组合
Combination
籽粒光能利用效率
Radiation use efficiency of grain
总生物量光能利用效率
Radiation use of efficiency of total biomass
第一季
First
season
第二季
Second
season
周年
Annual
第一季
First
season
第二季
Second
season
周年
Annual
2015 LH 1.05 1.31 1.19 1.82 2.06 1.95
MM 1.16 1.32 1.24 2.09 2.09 2.09
MH 1.16 1.31 1.24 2.09 2.07 2.08
HM 1.20 1.33 1.26 2.18 2.22 2.20
2016 LH 0.61 0.79 0.71 1.39 1.39 1.39
MM 0.60 1.01 0.81 1.76 1.58 1.67
MH 0.60 0.98 0.79 1.76 1.57 1.66
HM 0.66 1.15 0.89 1.83 1.82 1.83
2017 LH 0.75 0.76 0.76 1.44 1.53 1.49
MM 0.77 1.10 0.92 1.73 1.91 1.82
MH 0.77 1.01 0.88 1.73 1.82 1.77
HM 0.79 1.25 0.98 1.76 2.25 1.97
平均值
Mean
LH 0.80 a 0.95 c 0.88 c 1.55 c 1.66 c 1.61 c
MM 0.84 a 1.14 b 0.99 b 1.86 b 1.86 b 1.86 b
MH 0.84 a 1.10 b 0.97 b 1.86 b 1.82 b 1.84 b
HM 0.88 a 1.24 a 1.04 a 1.92 a 2.10 a 2.00 a
[1] Tao F, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agric For Meteorol, 2006, 138:82-92.
[2] Zhang T, Huang Y, Yang X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Global Change Biol, 2013, 19:56-570.
[3] Wang X H, Ciais P, Li L, Ruget F, Vuichard N, Viovy N, Zhou F, Chang J F, Wu X C, Zhao H F, Piao S L. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991-2012. Agric For Meteorol, 2017, 233:1-11.
[4] Zhang T, Huang Y, Yang X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Global Change Biol, 2013, 19:563-570.
[5] Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ Exp Bot, 2016, 132:28-41.
[6] Kendy E, Zhang Y Q, Liu C M, Wang J X, Steenhuis T. Groundwater recharge from irrigated cropland in the North China Plain: case study of Luancheng county, Hebei province, 1949-2000. Hydrol Proc, 2004, 18:2289-2302.
[7] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019, 45:589-600.
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agron Sin, 2019, 45:589-600 (in Chinese with English abstract).
[8] 李立娟, 王美云, 赵明. 品种对双季玉米早春季和晚夏季的适应性研究. 作物学报, 2011, 37:1660-1665.
Li L J, Wang M Y, Zhao M. Adaptability of varieties to double-cropping in early spring and late summer. Acta Agron Sin, 2011, 37:1660-1665 (in Chinese with English abstract).
[9] 李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明. 黄淮海双季玉米产量性能与资源效率的研究. 作物学报, 2011, 37:1229-1234.
Li L J, Wang M Y, Xue Q L, Cui Y H, Hou H P, Ge J Z, Zhao M. Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai Rivers valleys region. Acta Agron Sin, 2011, 37:1229-1234 (in Chinese with English abstract).
[10] 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43:329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Sci Agric Sin. 2010, 43:329-336 (in Chinese with English abstract).
[11] 袁建华, 颜伟, 陈艳萍, 张跃中. 南方丘陵生态区玉米生产现状及发展对策. 玉米科学, 2003, (增刊2):29-31.
Yuan J H, Yan W, Chen Y P, Zhang Y Z. Current situation and development countermeasures of maize production in south hilly ecological region. J Maize Sci, 2003, (S2):29-31 (in Chinese with English abstract).
[12] 葛均筑. 气象资源特性对玉米产量形成的影响及长江中游玉米高产关键技术研究. 华中农业大学博士学位论文, 湖北武汉, 2015.
Ge J Z. Studies of Resources Character Effected on Maize Yield Formation and High Yield Cultivation Technique in the Middle Reaches of Yangtze River. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[13] 雷恩. 高产栽培条件下春玉米-晚稻种植模式产量及经济效益研究. 湖南农业大学硕士学位论文, 湖南长沙, 2009.
Lei E. Studies on the Yield and Economic Benefits of Cropping System of Spring Maize-late Rice under High Yielding Cultivation Conditions. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2009 (in Chinese with English abstract).
[14] 李淑娅. 长江中游不同玉稻种植模式产量形成及资源利用效率比较研究. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Li S Y. Comparative Studies on Yield Formation and Resource Use Efficiency of Different Maize and Rice Cropping Systems in Middle Reaches of Yangtze River. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[15] 陈立军. 南方稻田双季玉米栽培模式研究. 湖南农业大学硕士学位论文, 湖南长沙, 2010.
Chen L J. Study on Cultivation Models for Double-season Maize in Paddy Field in Southern China. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[16] 吴丹. 双季玉米在河北平原适应性的系统研究. 河北农业大学硕士学位论文, 河北保定, 2014.
Wu D. A Systematic Study on Adaptability of Maize-maize Double Cropping in the Hebei Plain. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2014 (in Chinese with English abstract).
[17] 冯明, 刘可群, 毛飞. 湖北省气候变化与主要农业气象灾害的响应. 中国农业科学, 2007, 40:1646-1653.
Feng M, Liu K Q, Mao F. Climate change and main response to agrometeorological disasters in Hubei province. Sci Agric Sin, 2007, 40:1646-1653 (in Chinese with English abstract).
[18] 张建平, 赵艳霞, 王春乙, 何勇. 气候变化对我国南方双季稻发育和产量的影响. 气候变化研究进展, 2005, 1(4):151-156.
Zhang J P, Zhao Y X, Wang C Y, He Y. Effects of climate change on development and yield of double cropping rice in southern China. Clim Change Res, 2005, 1(4):151-156 (in Chinese with English abstract).
[19] 胡忠孝. 中国水稻生产形势分析. 杂交水稻, 2009, 24(6):1-7.
Hu Z X. Analysis on the situation of rice production in China. Hybrid Rice, 2009, 24(6):1-7 (in Chinese with English abstract).
[20] 朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010, 43:474-479.
Zhu D F, Cheng S H, Zhang Y P, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world. Sci Agric Sin, 2010, 43:474-479 (in Chinese with English abstract).
[21] 任天志. 从粮饲需求结构演变看我国种植制度发展方向. 沈阳农业大学学报, 1998, 29(1):12-15.
Ren T Z. Development of cropping system in the view of demand of grain and forage in China. J Shenyang Agric Univ, 1998, 29(1):12-15 (in Chinese with English abstract).
[22] 王美云, 任天志, 赵明, 李少昆, 王晓波, 李立娟, 陈长利. 双季青贮玉米模式物质生产及资源利用效率研究. 作物学报, 2007, 33:1316-1323.
Wang M Y, Ren T Z, Zhao M, Li S K, Wang X B, Li L J, Chen C L. Matter production and resources use efficiency of double cropping silage maize system. Acta Agron Sin, 2007, 33:1316-1323 (in Chinese with English abstract).
[23] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M. Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013, 144:192-199.
[24] Ding L, Wang K J, Jiang G M, Liu M Z, Niu S L, Gao L M. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res, 2005, 93:108-115.
[25] Hou P, Gao Q, Xie R Z, Li S K, Meng Q F, Kirkby E A, Römheld V, Müller T, Zhang F S, Cui Z L, Chen X P. Grain yields in relation to N requirement: optimizing nitrogen management for spring maize grown in China. Field Crops Res, 2012, 129:1-6.
[26] 周宝元. 黄淮海两熟制资源季节间优化配置及季节内高效利用技术体系研究. 中国农业大学博士学位论文, 北京, 2015.
Zhou B Y. Study on the Distribution and Highly Efficient Utilization of Resources for Double Cropping System in the Huang-Huai-Hai Plain, PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[27] Warrington I J, Kanemasu E T. Corn growth response to temperature and photoperiod: I. Seedling emergence, tassel initiation, and anthesis. Agron J, 1983, 75:749-754.
[28] Tollenaar M. Duration of the grain-filling period in maize is not affected by photoperiod and incident PPFD during the vegetative phase. Field Crops Res, 1999, 62:15-21.
[29] Chen C, Lei C, Deng A, Qian C, Hoogmoed W, Zhang W. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965-2008. Agric Forest Meteorol, 2011, 151:1580-1588.
[30] Liu L, Wang E, Zhu Y, Tang L, Cao W. Effects of warming and autonomous breeding on the phenological development and grain yield of double-rice systems in China. Agric Ecosyst Environ, 2013, 165:28-38.
[31] Allison J C S, Daynard T B. Effect of change in time of flowering, induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci, 1979, 19:1-4.
[32] Dong J, Liu J, Tao F, Xu X, Wang J. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Clim Res, 2009, 40:37-48.
[33] Liu Y E, Hou P, Xie R Z, Li S K, Zhang H B, Ming B, Ma D L, Liang S M. Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sci, 2013, 53:1693-1703.
[34] Adams R M. Global climate change and agriculture: an economic perspective. Am J Agric Econ, 1989, 71:1272-1279.
[35] Almaraz J J, Mabood F, Zhou X, Gregorich E G, Smith D L. Climate change, weather variability and corn yield at a higher latitude locale: Southwestern Quebec. Clim Change, 2008, 88:187-197.
[36] Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M. Maize grain yield and dry matter production responses to variations in weather conditions. Agron J, 2016, 108:196-204.
[37] He L, Asseng S, Zhao G, Wu D R, Yang X Y, Zhuang W, Jin N, Yu Q. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteorol, 2015, 200:135-143.
[38] Martínez R D, Cirilo A G, Cerrudo A A, Andrade F, Izquierdo N G. Discriminating post-silking environmental effects on starch composition in maize kernels. J Cereal Sci, 2019, 87:150-156.
[39] Ray D K, Gerber J S, MacDonald G K, West P C. Climate variation explains a third of global cropyield variability. Nat Commun, 2015, 6:5989.
[40] Wang D, Li G R, Zhou B Y, Zhan M, Cao C G, Meng Q F, Xia F, Ma W, Zhao M. Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain. J Integr Agric, 2020, 19:2997-3012.
[41] Ge J Z, Xu Y, Zhong X Y, Li S Y, Tian S Y, Yuan G Y, Cao C G, Zhan M, Zhao M. Climatic conditions varied by planting date affects maize yield in Central China. Agron J, 2016, 108:966-977.
[42] 李淑娅, 田少阳, 袁国印, 葛均筑, 徐莹, 王梦影, 曹凑贵, 翟中兵, 凌霄霞, 展茗, 赵明. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究. 作物学报, 2015, 41:1537-1547.
Li S Y, Tian S Y, Yuan G Y, Ge J Z, Xu Y, Wang M Y, Cao C G, Zhai Z B, Ling X X, Zhan M, Zhao M. Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in middle reaches of Yangtze River. Acta Agron Sin, 2015, 41:1537-1547 (in Chinese with English abstract).
[43] 邓妍, 王创云, 赵丽, 张丽光, 郭虹霞, 牛学谦, 王陆军. 行距配置对玉米茎秆抗倒伏特性及光合性能的影响. 中国农学通报, 2017, 33(21):15-20.
Deng Y, Wang C Y, Zhao L, Zhang L G, Guo H X, Niu X Q, Wang L J. Row spacing allocation: effect on stem loding resistance and photosynthetic properties of maize. Chin Agric Sci Bull, 2017, 33(21):15-20 (in Chinese with English abstract).
[44] 刘铁东, 宋凤斌. 灌浆期玉米冠层微环境对宽窄行种植模式的反应. 干旱地区农业研究, 2012, 30(3):37-40.
Liu T D, Song F B. Response of maize canopies micro- environment to wide and narrow planting pattern during grain filling period. Agric Res Arid Areas, 2012, 30(3):37-40 (in Chinese with English abstract).
[45] 梁熠, 齐华, 王敬亚, 白向历, 王晓波, 刘明, 孟显华, 许晶. 宽窄行栽培对玉米生长发育及产量的影响. 玉米科学, 2009, 17(4):97-100.
Liang Y, Qi H, Wang J Y, Bai X L, Wang X B, Liu M, Meng X H, Xu J. Effects of growth and yield of maize under wide and narrow row cultivation. J Maize Sci, 2009, 17(4):97-100 (in Chinese with English abstract).
[1] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[5] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[6] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[7] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[8] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[13] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[14] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[15] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!