欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2339-2350.doi: 10.3724/SP.J.1006.2022.11065

• 耕作栽培·生理生化 • 上一篇    下一篇

不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应

曹际玲1(), 曾青2,*(), 朱建国2,*()   

  1. 1.江西农业大学国土资源与环境学院 / 江西省鄱阳湖流域农业资源与生态重点实验室, 江西南昌 330045
    2.中国科学院南京土壤研究所 / 土壤与农业可持续发展国家重点实验室, 江苏南京 210008
  • 收稿日期:2021-07-22 接受日期:2022-01-05 出版日期:2022-09-12 网络出版日期:2022-05-01
  • 通讯作者: 曾青,朱建国
  • 作者简介:E-mail: jlcao2008@163.com
  • 基金资助:
    国家自然科学基金项目(31800520)

Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage

CAO Ji-Ling1(), ZENG Qing2,*(), ZHU Jian-Guo2,*()   

  1. 1. Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province / College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    2. State Key Laboratory of Soil and Sustainable Agriculture / Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
  • Received:2021-07-22 Accepted:2022-01-05 Published:2022-09-12 Published online:2022-05-01
  • Contact: ZENG Qing,ZHU Jian-Guo
  • Supported by:
    National Natural Science Foundation of China(31800520)

摘要:

利用开放式臭氧(O3)浓度升高平台, 以不同小麦品种(烟农19和扬麦16)为供试作物, 研究了O3浓度升高条件下不同品种灌浆期叶片光合特性和光合基因表达的差异。结果表明, 与对照处理相比, O3浓度升高处理达75 d导致小麦灌浆期叶片光合响应参数表观量子效率、最大净光合速率和叶绿素a、叶绿素b和类胡萝卜素含量下降, 使得小麦灌浆期叶片总可溶性糖、蔗糖、果糖、葡萄糖含量增加。通过荧光定量PCR测定发现, O3浓度升高还引起小麦叶片叶绿体编码基因psaApsbArbcL基因表达下调。不同小麦品种光合生理指标和叶绿体基因表达水平的变化幅度不同, 烟农19的响应幅度均大于扬麦16。该研究结果可为O3污染环境下不同小麦品种光合响应差异机制和小麦耐性品种的选育提供理论依据。

关键词: 臭氧, 小麦, 光合响应, 可溶性糖, 叶绿体基因表达

Abstract:

Elevated ground-level ozone (O3) concentration, caused by anthropogenic activities, possesses species-specific or cultivars-specific impacts on plant growth and quality. In this study, a field experiment was conducted using two wheat (Tritcium aestivum L.) cultivars (Yannong 19 and Yangmai 16) with different sensitivities to O3 with two O3 levels (ambient, +50%) in the Chinese free air O3 concentration enrichment platform. The light-response curve, photosynthetic pigment, soluble sugar contents, and photosynthetic gene expression levels were investigated. Results showed that O3 significantly decreased the apparent quantum yield, maximum net photosynthetic rate, chlorophyll a, chlorophyll b, and carotenoid contents. However, the contents of total soluble sugar, glucose, fructose, and sucrose were significantly increased under elevated O3 concentration. The qRT-PCR revealed that the relative gene expression levels of psaA, psbA, and rbcL were significantly decreased by elevated O3 concentration. There were differences in photosynthetic characteristics between two wheat cultivars. Yannong 19 had larger changes in photosynthetic characteristics and the relative chloroplast gene expression levels of psaA, psbA, and rbcL than that of Yangmai 16. This finding can provide theoretical basis for the differential mechanism of photosynthetic response of different wheat varieties and the breeding of wheat tolerant varieties under ozone pollution environment.

Key words: ozone, wheat, photosynthetic responses, soluble sugar, chloroplast gene expression

表1

叶绿体基因引物序列"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
18S rRNA GCCGAGAGTCGTGTGGATTA GAACCTGCGGAAGGATCATT
psaA TTTGGCGAGCATCTGGAATA CCGCTAAGTGGTGATTCAACA
psbA CAAGGTTAGCACGGTTGATGA GCTGCTTGGCCTGTAGTAGGA
rbcL GATACCGCGAGCACGATCTT CGCGACAATGGCCTACTTCT

表2

O3浓度升高条件下小麦灌浆期旗叶光合作用对光强响应特征参数的变化"

参数
Parameter
DOT
(d)
烟农19 YN19 扬麦16 YM16
对照Ambient FACE-O3 对照Ambient FACE-O3
最大净光合速率 55 27.6±0.52 aA 28.9±0.47 aA 28.1±1.26 aA 27.7±1.13 aA
Maximum net photosynthetic rate 65 29.4±0.78 aA 29.7±0.55 aA 30.8±0.93 aA 28.5±0.53 aA
(Pmax, μmol m-2 s-1) 75 21.9±0.19 aB 10.1±0.15 cB 23.3±0.01 aB 17.3±0.68 bB
光饱和点 55 1983±79 aA 1867±100 aA 1864±66 aB 1850±81 aA
Light saturation point 65 2106±98 aA 2001±71 bA 2274±75 aA 2050±92 aA
(LSP, μmol m-2 s-1) 75 1565±105 bB 822±51 cB 1564±82 cB 1299±43 dB
光补偿点 55 52.0±2.3 aB 51.9±2.3 aB 37.3±1.3 bB 34.6±1.3 bB
Light compensation point 65 62.7±2.7 bA 68.0±2.3 abA 68.0±2.3 abA 80.0±4.6 aA
(LCP, μmol m-2 s-1) 75 31.0±0.6 abC 36.6±2.4 aC 25.3±1.3 bcC 21.7±1.2 cC
暗呼吸速率 55 2.39±0.18 aB 2.13±0.02 abB 1.69±0.10 bB 1.65±0.16 bB
Dark respiration rate 65 3.42±0.10 bA 3.79±0.24 abA 4.17±0.18 abA 4.42±0.20 aA
(Rd, μmol m-2 s-1) 75 1.50±0.16 aC 1.29±1.00 aC 1.31±0.16 aB 0.98±0.10 aB
表观量子效率 55 0.054±0.005 aA 0.052±0.004 aA 0.051±0.004 aA 0.056±0.005 aA
Apparent quantum yield 65 0.056±0.004 aA 0.061±0.004 aA 0.058±0.005 aA 0.056±0.002 aA
(AQY) 75 0.042±0.002 abB 0.028±0.005 cB 0.046±0.003 aB 0.034±0.004b cB

图1

O3浓度升高条件下小麦灌浆期旗叶光响应曲线 YN19: 烟农19; YM16: 扬麦16。55 d、65 d和75 d表示臭氧处理天数。"

图2

O3浓度升高条件下小麦灌浆期旗叶光合色素含量和组成的变化 YN19: 烟农19; YM16: 扬麦16。55 d、65 d和75 d表示臭氧处理天数。柱形图中不同字母表示不同处理间差异显著(P < 0.05)。"

表4

O3浓度升高条件下小麦灌浆期旗叶可溶性糖含量的变化"

糖含量
Suger content
DOT 烟农19 YN19 扬麦16 YM16
对照 Ambient FACE-O3 对照 Ambient FACE-O3
总可溶性糖
Total soluble sugar
(mg g-1)
55 d 0.616±0.049 aA 0.705±0.058 aA 0.708±0.048 aA 0.726±0.060 aA
65 d 0.511±0.073 aAB 0.522±0.107 aAB 0.551±0.045 aB 0.583±0.068 aB
75 d 0.404±0.032 abB 0.441±0.022 aB 0.373±0.024 bC 0.432±0.022 abC
果糖
Fructose
(mg g-1)
55 d 0.040±0.001 aA 0.043±0.002 aA 0.044±0.002 aA 0.040±0.002 aA
65 d 0.038±0.000 aA 0.036±0.001 abB 0.036±0.002 abB 0.033±0.001 bB
75 d 0.030±0.002 bB 0.035±0.001 aB 0.030±0.000 bC 0.028±0.001 bC
蔗糖
Sucrose
(mg g-1)
55 d 0.585±0.053 aA 0.686±0.116 aA 0.606±0.025 aA 0.630±0.009 aA
65 d 0.396±0.035 bB 0.411±0.035 abB 0.565±0.094 aA 0.464±0.006 abB
75 d 0.177±0.034 bC 0.285±0.043 aB 0.150±0.028 bB 0.214±0.016 abC
葡萄糖
Glucose
(mg g-1)
55 d 0.020±0.008 aB 0.023±0.004 aB 0.020±0.004 aB 0.021±0.003 aC
65 d 0.079±0.002 aA 0.078±0.002 aA 0.066±0.001 bA 0.051±0.002 cB
75 d 0.069±0.002 abA 0.074±0.008 aA 0.060±0.004 bA 0.080±0.004 aA

图3

O3浓度升高(75 d)条件下小麦灌浆期旗叶叶绿体基因表达量的变化 YN19: 烟农19; YM16: 扬麦16。*: P < 0.05; **: P < 0.01; ns: 不显著(P > 0.05)。"

[1] Cooper O R, Parrish D D, Ziemke J, Balashov N V, Cupeiro M, Galbally I E, Gilge S, Horowitz L, Jensen N R, Lamarque J F, Naik V, Oltmans S J, Schwab J, Shindell D T, Thompson A M, Thouret V, Wang Y, Zbinden R M. Global distribution and trends of tropospheric ozone: an observation based review. Elementa-Sci Anthrop, 2014, 2: 000029.
[2] 冯兆忠, 李品, 袁相洋, 高峰, 姜立军, 代碌碌. 我国地表臭氧生态环境效应研究进展. 生态学报, 2018, 38: 1530-1541.
Feng Z Z, Li P, Yuan X Y, Gao F, Jiang L J, Dai L L. Progress in ecological and environmental effects of ground-level O3 in China. Acta Ecol Sin, 2018, 38: 1530-1541 (in Chinese with English abstract).
[3] Feng Z Z, Hu E Z, Wang X K, Jiang L J, Liu X J. Ground-level O3 pollution and its impacts on food crops in China: a review. Environ Pollut, 2015, 199: 42-48.
doi: 10.1016/j.envpol.2015.01.016
[4] Ainsworth E A. Understanding and improving global crop response to ozone pollution. Plant J, 2017, 90: 886-897.
doi: 10.1111/tpj.13298
[5] Grulke N E, Heath R L. Ozone effects on plants in natural ecosystems. Plant Biol, 2020, 22: 12-37.
doi: 10.1111/plb.12971
[6] Feng Z Z, Agathokleous E, Yue X, Oksanen E, Paoletti E, Sase H, Gandin A, Koike T, Calatayud V, Yuan X Y, Liu X J, De Marco A, Jolivet Y, Kontunen-Soppela S, Hoshika Y, Saji H, Li P, Li Z Z, Watanabe M, Kobayashi K. Emerging challenges of ozone impacts on asian plants: actions are needed to protect ecosystem health. Ecosyst Health Sustain, 2021, 7: 1911602.
[7] Lin Y, Jiang F, Zhao J, Zhu G, He X, Ma X, Li S, Sabel C E, Wang H. Impacts of O3 on premature mortality and crop yield loss across China. Atmos Environ, 2018, 194: 41-47.
doi: 10.1016/j.atmosenv.2018.09.024
[8] Shi G Y, Yang L X, Wang Y X, Kobayashi K, Zhu J G, Tang H Y, Pan S T, Chen T, Liu G, Wang Y L. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agric Ecosyst Environ, 2009, 131: 178-184.
doi: 10.1016/j.agee.2009.01.009
[9] Zhu X K, Feng Z Z, Sun T F, Liu X C, Tang H Y, Zhu J G, Guo W S, Kobayashi K. Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Change Biol, 2011, 17: 2697-2706.
doi: 10.1111/j.1365-2486.2011.02400.x
[10] 曹嘉晨, 郑有飞, 赵辉, 徐静馨. 地表臭氧浓度升高对冬小麦和大豆生长和产量的影响. 生态毒理学报, 2017, 12(2): 129-136.
Cao J C, Zheng Y F, Zhao H, Xu J X. Impact of elevated ozone concentration on growth and yield of winter wheat and soybean. Asian J Ecotoxicol, 2017, 12(2): 129-136. (in Chinese with English abstract)
[11] 郭建平, 王春乙, 温民, 白月明. 大气中臭氧浓度变化对蔬菜的影响研究. 中国生态农业学报, 2003, 11(2): 18-20.
Guo J P, Wang C Y, Wen M, Bai Y M. Study on the impacts of ozone concentration on vegetables. Chin J Eco-Agric, 2011, 11(2): 18-20.<br (in Chinese with English abstract)
[12] Lal S, Venkataramani S, Naja M, Kuniyal J C, Mandal T K, Bhuyan P K, Kumari K M, Tripathi S N, Sarkar U, Das T, Swamy Y V, Gopal K R, Gadhavi H, Kumar M K S. Loss of crop yields in India due to surface ozone: an estimation based on a betwork of observations. Environ Sci Pollut Res, 2017, 24: 20972-20981.
[13] Feng Z Z, Kobayashi K. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ, 2009, 43: 1510-1519.
doi: 10.1016/j.atmosenv.2008.11.033
[14] Fuhrer J, Val Martin M, Mills G, Heald C L, Harmens H, Hayes F, Sharps K, Bender J, Ashmore M R. Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecol Evol, 2016, 6: 8785-8799.
doi: 10.1002/ece3.2568 pmid: 28035269
[15] Heath R L. Possible mechanisms for inhibition of photosynthesis by ozone. Photosynth Res, 1994, 39: 439-451.
doi: 10.1007/BF00014597
[16] Pellegrini E, Campanella A, Cotrozzi L, Tonelli M, Nali C, Lorenzini G. What about the detoxification mechanisms underlying ozone sensitivity in Liriodendron tulipifera? Environ Sci Pollut Res, 2018, 25: 8148-8160.
doi: 10.1007/s11356-017-8818-7
[17] Wieser G, Tegischer K, Tausz M, Häberle K H, Grams T E, Matyssek R. Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol, 2002, 22: 583-590.
doi: 10.1093/treephys/22.8.583
[18] Xing H, Hao G M, Chen Z W, Sun Y J, Zhai H, Du Y P. Effects of ozone stress on the activity of photosystems and on the D1 protein turnover in grape leaves. Plant Physiol J, 2017, 53: 1901-1908.
[19] Ciompi S, Castagna A, Ranieri A, Nali C, Lorenzini G, Soldatini G F. CO2 assimilation, xanthophyll cycle pigments and PSII efficiency in pumpkin plants as affected by ozone fumigation. Physiol Plant, 2010, 101: 881-889.
[20] Wang H, Xing H, Wang Y F, Zhai H, Ling T M, Du Y P. Ozone risk assessment of grapevine ‘Cabernet Sauvignon’ using open-top chambers. Sci Hortic, 2020, 260: 108874.
[21] Dizengremel P. Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem, 2001, 39: 729-742.
doi: 10.1016/S0981-9428(01)01291-8
[22] 辛月, 高峰, 冯兆忠. 不同基因型杨树的光合特征与臭氧剂量的响应关系. 环境科学, 2016, 6: 2359-2367.
Xin Y, Gao F, Feng Z Z. Photosynthetic characteristics and ozone dose-response relationships for different genotypes of poplar. Environ Sci, 2016, 6: 2359-2367. (in Chinese with English abstract)
[23] Feng Z Z, Pang J, Kobayashi K, Zhu J G, Ort D R. Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biol, 2011, 17: 580-591.
doi: 10.1111/j.1365-2486.2010.02184.x
[24] 杨宁, 王效科, 张玉龙, 郑飞翔, 陈媛媛. 不同植物叶片臭氧伤害症状及其生理响应机制的差异. 生态毒理学报, 2017, 12(6): 141-149.
Yang N, Wang X K, Zhang Y L, Zheng F X, Chen Y Y. Ozone injury to marigold (Tagetes erecta Linn.), petunia (Petunia hybrida Wilm.) and norning lory (Pharbitis purpurea (L.) Voigt) and their different physiological responses. Asian J Ecotoxicol, 2017, 12(6): 141-149. (in Chinese with English abstract)
[25] Pang J, Kobayashi K, Zhu J G. Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric Ecosyst Environ, 2009, 132: 203-211.
doi: 10.1016/j.agee.2009.03.012
[26] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4): 1-7. (in Chinese with English abstract)
[27] Feng Z Z, Kobayashi K, Ainsworth E A. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biol, 2008, 14: 2696-2708.
doi: 10.1111/j.1365-2486.2008.01673.x
[28] Tang H Y, Liu G, Han Y, Zhu J G, Kobayashi K. A system for free-air ozone concentration elevation with rice and wheat: control performance and ozone exposure regime. Atmos Environ, 2011, 45: 6276-6282.
doi: 10.1016/j.atmosenv.2011.08.059
[29] Biswas D K, Yu H, Li G Y, Sun J Z, Wang X G, Han X G, Jiang G M. Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biol, 2008, 14: 46-59.
doi: 10.1111/j.1365-2486.2007.01477.x
[30] Li Y L, Liu X G, Hao K, Yang Q L, Yang X Q, Zhang W H, Cong Y. Light-response curve of photosynthesis and model fitting in leaves of Mangifera indica under different soil water conditions. Photosynthetica, 2019, 57: 796-803.
doi: 10.32615/ps.2019.095
[31] Marino G, Aqil M, Shipley B. The leaf economics spectrum and the prediction of photosynthetic light-response curves. Funct Ecol, 2010, 24: 263-272.
doi: 10.1111/j.1365-2435.2009.01630.x
[32] Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol, 1987, 148: 350-382.
[33] Hanson J, Moller I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Ann Biochem, 1975, 68: 87-94.
doi: 10.1016/0003-2697(75)90682-X
[34] Hewitt B R. Spectrophotometric determination of total carbohydrate. Nature, 1958, 182: 246-247.
[35] Jafarikouhini N, Kazemeini S A, Sinclair T R. Sweet corn nitrogen accumulation, leaf photosynthesis rate, and radiation use efficiency under variable nitrogen fertility and irrigation. Field Crops Res, 2020, 257: 107913.
[36] Sperlich D, Chang C T, Peñuelas J, Sabate S. Responses of photosynthesis and component processes to drought and temperature stress: are Mediterranean trees fit for climate change? Tree Physiol, 2019, 39: 1783-1805.
doi: 10.1093/treephys/tpz089 pmid: 31553458
[37] Kirschbaum M. Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol, 2004, 6: 242-253.
doi: 10.1055/s-2004-820883
[38] 董志新, 韩清芳, 贾志宽, 任广鑫. 不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征. 生态学报, 2007, 27: 2272-2278.
Dong Z X, Han Q F, Jia Z K, Ren G X. Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieities. Acta Ecol Sin, 2007, 27: 2272-2278. (in Chinese with English abstract)
[39] Kataria S, Guruprasad K N. Intraspecific variations in growth, yield and photosynthesis of sorghum varieties to ambient UV (280-400 nm) radiation. Plant Sci, 2012, 196: 85-92.
doi: 10.1016/j.plantsci.2012.07.011 pmid: 23017902
[40] Hansen E M, Hauggaard-Nielsen H, Launay M, Rose P, Mikkelsen T N. The impact of ozone exposure, temperature and CO2 on the growth and yield of three spring wheat varieties. Environ Experi Bot, 2019, 168: 103868.
[41] Ainsworth E A, Yendrek C R, Sitch S. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol, 2012, 63: 637-661.
doi: 10.1146/annurev-arplant-042110-103829
[42] Pandey A K, Majumder B, Keski-Saari S, Kontunen-Soppela S, Pandey V, Oksanen E. High variation in resource allocation strategies among 11 Indian wheat (Triticum aestivum) cultivars growing in high ozone environment. Climate, 2019, 7: 23.
doi: 10.3390/cli7020023
[43] 曹际玲, 王亮, 曾青, 梁晶, 唐昊冶, 谢祖彬, 刘钢, 朱建国, Kobayashi K. 开放式臭氧浓度升高条件下不同敏感型小麦品种的光合特性. 作物学报, 2009, 35: 1500-1507.
Cao J L, Wang L, Zeng Q, Liang J, Tang H Y, Xie Z B, Liu G, Zhu J G, Kobayashi K. Characteristics of photosynthesis in wheat cultivars with different sensitivities to ozone under O3-free air concentration enrichment conditions. Acta Agron Sin, 2009, 35: 1500-1507. (in Chinese with English abstract)
[44] Begum H, Alam M S, Feng Y, Koua P, Ashrafuzzaman M, Shrestha A, Kamruzzaman M, Dadshani S, Ballvora A, Naz A A, Frei M. Genetic dissection of bread wheat diversity and identification of adaptive loci in response to elevated tropospheric ozone. Plant Cell Environ, 2020, 43: 2650-2665.
doi: 10.1111/pce.13864
[45] Shang B, Feng Z Z, Li P, Yuan X Y, Xu Y S, Calatayud V. Ozone exposure- and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones. Sci Total Environ, 2017, 603-604: 185-195.
doi: 10.1016/j.scitotenv.2017.06.083
[46] Pell E J, Schlagnhaufer C D, Arteca R N. Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiol Plant, 1997, 100: 264-273.
doi: 10.1111/j.1399-3054.1997.tb04782.x
[47] Kobayakawa H, Imai K. Effects of the interaction between ozone and carbon dioxide on gas exchange, photosystem II and antioxidants in rice leaves. Photosynthetica, 2011, 49: 227-238.
doi: 10.1007/s11099-011-0024-0
[48] Iida S, Kobiyama A, Takehiko O, Murakami A. Differential DNA rearrangements of plastid genes, psbA and psbD, in two species of the dinoflagellate Alexandrium. Plant Cell Physiol, 2010, 51: 1869-1877.
doi: 10.1093/pcp/pcq152
[49] 朱素琴, 夏树林, 陈庆, 陈曦, 季本华. 光系统 II D1蛋白表达调控机制研究进展. 贵州农业科学, 2012, 40(11): 37-42.
Zhu S Q, Xia S L, Chen Q, Chen X, Ji B H. The progress of researches on regulatory mechanism of photosystem II D1 protein expression. Guizhou Agric Sci, 2012, 40(11): 37-42. (in Chinese with English abstract)
[50] Giardi M T, Masojidek J, Godde D. Effects of abiotic stresses on the turnover of the Dl reaction centre II protein. Physiol Plant, 1997, 101: 635-642.
doi: 10.1111/j.1399-3054.1997.tb01048.x
[51] Liu W J, Yuan S, Zhang N H, Lei T, Duan H G, Lin H H. Effect of water stress on photosystem 2 in two wheat cultivars. Biol Plant, 2006, 50: 597-602.
doi: 10.1007/s10535-006-0094-1
[52] 郑有飞, 赵泽, 吴荣军, 张金恩, 胡程达. 臭氧胁迫对冬小麦光响应能力及PS II光能吸收与利用的影响. 生态学报, 2010, 30: 6771-6780.
Zheng Y F, Zhao Z, Wu R J, Zhang J E, Hu C D. Ozone stress on light response capacity and on the utilization of PSII absorbed light energy of winter-wheat. Acta Ecol Sin, 2010, 30: 6771-6780. (in Chinese with English abstract)
[53] He X Y, Fu S L, Chen W, Zhao T H, Xu S, Tuba Z. Changes in effects of ozone exposure on growth, photosynthesis, and respiration of Ginkgo biloba in Shenyang urban area. Photosynthetica, 2007, 45: 555-561.
doi: 10.1007/s11099-007-0095-0
[54] Neufeld H S, Johnson J, Kohut R. Comparative ozone responses of cutleaf coneflowers (Rudbeckia laciniata var. digitata, var. ampla) from Rocky Mountain and Great Smoky Mountains National Parks, USA. Sci Total Environ, 2018, 610-611.
[55] Robert L H. Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ Pollut, 2008, 155: 453-463.
doi: 10.1016/j.envpol.2008.03.010 pmid: 18456378
[56] Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P. Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought. Plant Cell Environ, 2001, 24: 123-131.
doi: 10.1046/j.1365-3040.2001.00665.x
[57] Morgan P B, Bernacchi C J, Ort D R, Long S P.An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol, 2004, 135: 2348-2357.
doi: 10.1104/pp.104.043968
[58] Dizengremel P, Thiec D L, Bagard M, Jolivet Y. Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power. Environ Pollut, 2008, 156: 11-15.
doi: 10.1016/j.envpol.2007.12.024 pmid: 18243452
[59] Goumenaki E, Taybi T, Borland A, Barnes J. Mechanisms underlying the impacts of ozone on photosynthetic performance. Environ Exp Bot, 2010, 69: 259-266.
doi: 10.1016/j.envexpbot.2010.04.011
[60] Imaji A, Seiwa K. Carbon allocation to defense, storage, and growth in seedlings of two temperate broad-leaved tree species. Oecologia, 2010, 162: 273-281.
doi: 10.1007/s00442-009-1453-3 pmid: 19763628
[61] 周慧敏, 李品, 冯兆忠, 张殷波. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响. 植物生态学报, 2019, 43: 296-304.
doi: 10.17521/cjpe.2019.0032
Zhou H M, Li P, Feng Z Z, Zhang Y B. Short-tem effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling. Chin J Plant Ecol, 2019, 43: 296-304. (in Chinese with English abstract)
doi: 10.17521/cjpe.2019.0032
[62] 郑有飞, 张金恩, 吴荣军, 赵泽, 胡程达. 地表臭氧胁迫对北方冬小麦光合及生理特征的影响. 农业环境科学学报, 2010, 29: 1429-1436.
Zheng Y F, Zhang J E, Wu R J, Zhao Z, Hu C D. Effect of ozone stress on photosynthesis and physiological characteristics of winter wheat in northern China. J Agro-environ Sci, 2010, 29: 1429-1436. (in Chinese with English abstract)
[63] Braun S, Zugmaier U, Thomas V, Fluckiger W. Carbohydrate concentrations in different plant parts of young beech and spruce along a gradient of ozone pollution. Atmos Environ, 2004, 38: 2399-2407.
doi: 10.1016/j.atmosenv.2003.12.037
[64] 郭雄飞, 黎华寿, 杨宝仪, 陈红跃, 王志云. 秋枫和木棉对大气臭氧浓度升高的生理响应. 中南林业科技大学学报, 2015, 35(2): 49-53.
Guo X F, Li H S, Yang B Y, Chen H Y, Wang Z Y. Physiological responses of Bischofia javanica and Bombax malabaricum to elevated atmospheric ozone concentration. J Central South Unir For Technol, 2015, 35(2): 49-53 (in Chinese with English abstract).
[65] Pleijel H, Eriksen A B, Danielsson H, Bondesson N, Selldén G. Differential ozone sensitivity in an old and a modern Swedish wheat cultivar-grain yield and quality, leaf chlorophyll and stomatal conductance. Environ Exp Bot, 2006, 56: 63-71.
doi: 10.1016/j.envexpbot.2005.01.004
[66] Li P, Calatayud V, Gao F, Uddling J, Feng Z Z. Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels. Tree Physiol, 2016, 36: 1105-1116.
doi: 10.1093/treephys/tpw042
[67] Feng Z Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J G. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut, 2010, 158: 3539-3545
doi: 10.1016/j.envpol.2010.08.019
[68] 黄益宗, 隋立华. 臭氧污染胁迫下植物的抗氧化系统调节机制. 生态毒理学报, 2013, 8: 456-464.
Huang Y Z, Sui L H. Antioxidant mechanism of plants under ozone stress. Asian J Ecotoxicol, 2013, 8: 456-464. (in Chinese with English abstract)
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[4] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[5] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[6] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[7] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[8] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[9] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[10] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[11] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[12] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[13] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[14] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[15] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!