欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 211-224.doi: 10.3724/SP.J.1006.2023.11100

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对滴灌春小麦叶片光合生理性状的影响

王海琪(), 王荣荣, 蒋桂英(), 尹豪杰, 晏世杰, 车子强   

  1. 石河子大学农学院, 新疆石河子 832000
  • 收稿日期:2021-11-16 接受日期:2022-06-07 出版日期:2023-01-12 网络出版日期:2022-11-08
  • 通讯作者: 蒋桂英
  • 作者简介:E-mail: 1486410951@qq.com
  • 基金资助:
    国家自然科学基金项目(31760346);南疆重点产业创新发展支撑计划项目(2021DB010)

Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves

WANG Hai-Qi(), WANG Rong-Rong, JIANG Gui-Ying(), YIN Hao-Jie, YAN Shi-Jie, CHE Zi-Qiang   

  1. College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2021-11-16 Accepted:2022-06-07 Published:2023-01-12 Published online:2022-11-08
  • Contact: JIANG Gui-Ying
  • Supported by:
    National Natural Science Foundation of China(31760346);Southern Xinjiang Key Industry Innovation and Development Support Plan(2021DB010)

摘要:

在北疆气候条件下, 为明确不同氮肥施用量对滴灌春小麦叶片光合特性与同化物累积的调控效应, 以强筋小麦新春37号(XC37)、中筋小麦新春6号(XC6)为试验材料, 采用裂区试验设计, 在CK1 (300 kg hm-2)、A1 (255 kg hm-2)、B1 (210 kg hm-2)、CK2 (0 kg hm-2)施氮水平下, 研究施氮量对小麦叶片光合关键酶活性、气体交换参数、叶绿素荧光参数、干物质累积分配、产量及氮肥利用率(NUE)的影响。结果表明, 随施氮量的增加, 光合关键酶活性、气体交换参数、叶绿素荧光参数、地上部干物质累积(SDM)、穗重(SPDM)及产量均呈先升后降的趋势。其中以A1处理表现出高的RuBPC酶活性、PEPC酶活性、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)、SDM、SPDM、产量和NUE, 比其余处理高出10.51%~30.45%, 7.05%~64.95%, 7.49%~26.66%, 11.61%~63.44%, 5.72%~49.85%, 1.68%~28.55%, 5.00%~46.01%, 18.95%~96.45%, 22.95%~177.44%, 4.15%~46.88%, 6.30%~25.42%, 胞间CO2浓度(Ci)相比其余处理降低了11.73%~20.95%。相关分析表明, 产量、干物质累积、NUE和PnGsTrФPSII呈极显著正相关关系, 与Ci呈极显著负相关。施氮量和品种互作对RuBPC酶活性在扬花期、PEPC酶活性在扬花至乳熟期、Fv/FmΦPSII在拔节期和扬花期的互作效应达到显著水平。因此, 新疆滴灌模式下, 适量减氮(255 kg hm-2)能改善小麦光合性能, 在增加干物质累积的基础上, 促进光合产物向穗部的分配运输, 有利于产量的形成。

关键词: 滴灌春小麦, 施氮量, 光合特性, 干物质累积, 产量

Abstract:

The objective of this study is to clarify the regulatory effects of different N fertilizer applications on photosynthetic characteristics and assimilate accumulation in drip irrigated spring wheat leaves under the climatic conditions of northern Xinjiang. A split-zone experimental design was used to investigate the effects of N application on the photosynthetic enzyme activities, gas exchange parameters, chlorophyll fluorescence parameters, dry matter accumulation partitioning, and yield of wheat leaves at CK1 (300 kg hm-2), A1 (255 kg hm-2), B1 (210 kg hm-2), and CK2 (0 kg hm-2) levels, in order to investigate the effects of N application on the activities of key photosynthetic enzymes, gas exchange parameters, chlorophyll fluorescence parameters, dry matter accumulation distribution, yield, and NUE of wheat leaves. The results showed that the photosynthetic key enzyme activity, gas exchange parameters, chlorophyll fluorescence parameters, aboveground dry matter accumulation (SDM), reproductive organ dry matter accumulation (SPDM), and yield all had an increasing trend followed by a decreasing trend with increasing N application. There were high RuBPC activity, PEPC enzyme activity, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), SDM, SPDM, yield and NUE in A1 treatment, which were 6.10%-30.45% higher than the rest of the treatments and 10.51%-64.95%, 7.05%-64.95%, 7.49%-26.66%, 11.61%-63.44%, 5.72%-49.85%, 1.68%-28.55%, 5.00%-46.01%, 18.95%-96.45%, 22.95%-177.44%, 4.15%-46.88%, 6.30%-25.42%, and intercellular CO2 concentration (Ci) was reduced by 11.73%-20.95% compared to the rest of the treatments. Correlation analysis revealed that the yield, dry matter accumulation, NUE and Pn, Gs, Tr, ФPSII were highly significantly positively correlated and highly significantly negatively correlated with Ci. The reciprocal effects of N application and variety intercropping reached significant levels for RuBPC enzyme activity at anthesis stage, PEPC enzyme activity from anthesis to milking, Fv/Fm and ΦPSII at nodulation and anthesis. Therefore, the moderate N reduction (255 kg hm-2) under the drip irrigation pattern in Xinjiang improved the photosynthetic performance of wheat and facilitated the distribution and transport of photosynthetic products to reproductive organs on the basis of increased dry matter accumulation, which was beneficial to yield formation.

Key words: drip irrigated spring wheat, N application, photosynthetic characteristics, dry matter accumulation, yield

图1

小麦生育期间日平均温度和降雨量"

表1

供试土壤基本理化性状"

年份
Year
全氮含量
Total N (g kg-1)
碱解氮含量
Available N
(mg kg-1)
速效磷含量
Available P
(mg kg-1)
速效钾含量
Available K
(mg kg-1)
有机质含量
Organic
(g kg-1)
pH
2020 1.30 61.30 15.24 147.01 18.43 7.7
2021 1.37 58.71 16.96 139.02 17.84 7.6

表2

不同处理氮肥施用量"

处理
Treatment
(kg hm-2)
基肥
Base fertilizer
(20%)
追肥
Top dressing
(80%)
二叶一心期Two-leaf one-hearted stage (10%) 分蘖期Tillering stage (10%) 拔节期
Jointing stage (40%)
孕穗期Booting stage (20%) 扬花期Flowering stage (15%) 乳熟期
Milky maturity stage (5%)
CK1 (300) 60 240 24 24 96 48 36 12
A1 (255) 51 204 20.4 20.4 81.6 40.8 30.6 10.2
B1 (210) 42 168 16.8 16.8 67.2 33.6 25.2 8.4
CK2 (0) 0 0 0 0 0 0 0 0

图2

滴灌带布置示意图"

图3

减氮处理对滴灌春小麦RuBPC酶活性和PEPC酶活性的影响 处理同表2。XC37: 新春37号; XC6: 新春6号。FS: 扬花期; MS: 乳熟期; DS: 蜡熟期。相同时期不同字母表示处理间差异在0.05水平上差异显著(P < 0.05)。"

表3

减氮处理对滴灌春小麦光合生理指标的方差分析"

性状
Trait
RuBPC PEPC Fv/Fm ΦPSII
FS MS DS FS MS DS TS JS BS FS MS DS TS JS BS FS MS DS
Y ns ns ns * ns ns ** ** ** ** ** ns ** ** ** ** ** ns
V ** ns ns ** ** ns ** ** ** ** ** ns ** ** ns ** * ns
N ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
Y*V ns ns ns ns ns ns ns ns ns ** ** ns ** ns ns ns ns ns
V*N ** ns ns ** ** ns ns ** ns ** ** ns * ** ns ** ns ns
Y*N ns ns ns ns ns ns ** ** ** ** ** ns ** ** ** ** ns ns
Y*V*N ns ns ns ns ns ns ns ** ns ** ** ns ns ** ns ns ns ns
性状
Trait
Pn Gs Ci Tr
TS JS BS FS MS DS TS JS BS FS MS DS TS JS BS FS MS DS TS JS BS FS MS DS
Y ** ** ** * ns ** ** * ** ** ** ** ** ** ns ** ** ns ** * ** ** ** ns
V ns ** ** ns ** ** * ** ** ** ** ns * ** ** * ns ns ** ** ** ** ** ns
N ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
Y*V ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ** ns ns ns
V*N ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ** ** ns ns
Y*N ns ns ** ns ns ns ns ** ** ** ** ns ** ** ** ns ns ns ns ** ** ** ** ns
Y*V*N ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ** ** ns ns

图4

减氮处理对滴灌春小麦净光合速率(Pn)和气孔导度(Gs)的影响 处理同表2。XC37: 新春37号; XC6: 新春6号。TS: 分蘖期; JS: 拔节期; BS: 孕穗期; FS: 扬花期; MS: 乳熟期; DS: 蜡熟期。相同时期不同字母表示处理间差异在0.05水平上差异显著(P < 0.05)。"

图5

减氮处理对滴灌春小麦胞间CO2浓度(Ci)和蒸腾速率(Tr)的影响 图上生育时期简写同图4; 处理同表2。相同时期不同字母表示处理间差异在0.05水平上差异显著(P < 0.05)。"

图6

减氮处理对滴灌春小麦最大光化学效率(Fv/Fm)的影响 图上生育时期简写同图4; 相同时期不同字母表示处理间差异在0.05水平上差异显著(P < 0.05)。"

图7

减氮处理对滴灌春小麦实际光化学效率(ΦPSII)的影响 图上生育时期简写同图4; 相同时期不同字母表示处理间差异在0.05水平上差异显著(P < 0.05)。"

表4

减氮处理对滴灌春小麦地上部干物质质量、穗重的影响"

年份
Years
(Y)
品种
Variety
(V)
施氮量
Nitrogen (N)
地上部干物质重Shoot dry matter (kg hm‒2) 穗重Spike dry matter (kg hm‒2) 产量
Yield
(kg hm‒2)
氮肥利用率NUE
TS JS BS FS MS BS FS MS
2020 新春37号
XC37
CK1 1305.03 b 2258.20 b 10087.33 b 11432.67 b 19744.50 b 2257.07 b 3419.20 b 10633.00 b 6952.75 b 40.20 a
A1 1585.03 a 2753.33 a 11332.87 a 13154.90 a 23486.53 a 2744.07 a 4179.50 a 12561.37 a 7247.82 a 42.23 a
B1 1254.20 b 2211.43 b 8107.63 c 8894.83 c 16470.63 c 1785.40 c 2746.73 c 7978.67 c 6818.60 c 33.67 bc
CK2 1079.77 c 1534.53 c 6701.53 d 8364.33c d 12292.53 d 1336.97 d 2246.93 d 5144.50 d 4986.42 d /
新春6号
XC6
CK1 1298.07 b 2187.80 b 9820.10 b 10911.10 b 17793.80 c 2218.10 b 3408.13 b 9858.90 b 6921.06 b 37.10 b
A1 1556.03 a 2683.33 a 11084.47 a 12805.40 a 22331.77 a 2738.57 a 4155.57 a 11852.27 a 7141.44 a 39.55 ab
B1 1151.23 bc 2186.87 b 7938.37 c 8698.67 c 15844.93 c 1694.80 c 2712.50 c 7820.90 c 6736.09 c 32.51 c
CK2 1014.57 c 1483.60 c 6623.83 d 7539.57 d 11698.87 d 1288.77 d 2222.8 d 4987.57 d 4881.70 d /
F
F-value
V ns ns * * * ns ns ns ns **
N ** ** ** ** ** ** ** ** ** **
N×V ns ns ns ns ns ns ns ns ns ns
2021 新春37号
XC37
CK1 1301.20 bc 2275.45 b 9766.47 b 11627.48 b 19095.80 b 2189.42 bc 3398.32 b 9065.75 b 6930.33 b 35.77 ab
A1 1536.20 a 2743.70 a 10910.15 a 13295.55 a 23703.10 a 2698.60 a 4058.40 a 11670.08 a 7220.33 a 36.86 a
B1 1177.45 cd 2206.00 bc 8104.10 c 8987.90 c 16632.68 c 1534.15 d 2583.35 c 7356.52 c 6782.00 bc 34.25 bc
CK2 1095.05 cd 1511.00 d 6373.93 d 7947.10 d 12220.15 d 1129.08 d 2105.73 d 4602.15 d 5013.00 d /
新春6号
XC6
CK1 1228.40 cd 2118.95 bc 9433.05 b 11150.27 b 18742.00 b 2015.90 c 3240.37 b 8893.95 b 6848.67 bc 34.55 b
A1 1464.85 ab 2587.05 a 10702.25 a 12760.30 a 22582.28 a 2617.85 ab 3917.85 a 11187.35 a 7180.33 a 34.77 ab
B1 1189.30 cd 1969.95 c 7734.10 c 8728.20 c 15638.52 c 1398.70 d 2513.05 c 7079.43 c 6687.33 c 32.71 c
CK2 1048.70 d 1368.80 d 6095.50 d 6220.13 e 11494.90 d 1054.25 d 1768.88 d 4032.30 d 4917.33 d /
F
F-value
V ns * ** ** * ns * * * **
N ** ** ** ** ** ** ** ** ** *
N×V ns ns ns ** ns ns ns ns ns ns

图8

减氮处理对滴灌春小麦生穗重所占比例的影响 图上生育时期简写同图4; 处理同表2。XC37: 新春37号;XC6:新春6号。相同时期不同字母表示处理间差异在0.05水平上差异显著(P < 0.05)。"

表5

不同时期测定参数与地上部和穗重的相关关系"

生育时期
Growth
stage
参数
Parameter
Yield NUE SDM SPDM Pn Gs Tr Ci Fv/Fm ΦPSII RuBPC PEPC
孕穗期
Booting
stage
Yield 1
NUE 0.99** 1
SDM 0.87** 0.85** 1
SPDM 0.83** 0.79** 0.99** 1
Pn 0.69** 0.70** 0.82** 0.84** 1
Gs 0.85** 0.83** 0.85** 0.81** 0.74** 1
Tr 0.77** 0.74** 0.80** 0.74** 0.61* 0.91** 1
Ci -0.72** -0.69** -0.91** -0.91** -0.78** -0.83** -0.78** 1
Fv/Fm 0.85** 0.83** 0.93** 0.90** 0.80** 0.97** 0.90** -0.92** 1
ΦPSII 0.89** 0.86** 0.92** 0.86** 0.67** 0.93** 0.94** -0.86** 0.95** 1
扬花期
Flowering stage
Yield 1
NUE 0.99** 1
SDM 0.81** 0.77** 1
SPDM 0.85** 0.82** 0.99** 1
Pn 0.77** 0.76** 0.87** 0.92** 1
Gs 0.72** 0.69** 0.71** 0.73** 0.68** 1
Tr 0.87** 0.85** 0.82** 0.86** 0.85** 0.93** 1
Ci -0.78** -0.77** -0.91** -0.95** -0.87** -0.63** -0.75** 1
Fv/Fm 0.63** 0.60* 0.62** 0.63** 0.56* 0.97** 0.88** -0.51* 1
ΦPSII 0.78** 0.75** 0.90** 0.89** 0.82** 0.46 0.68** -0.81** 0.37 1
RuBPC 0.82** 0.79** 0.94** 0.94** 0.89** 0.74** 0.87** -0.85** 0.69** 0.87** 1
PEPC 0.73** 0.70** 0.89** 0.90** 0.89** 0.67** 0.81** -0.80** 0.62** 0.84** 0.97** 1
乳熟期
Milking
stage
Yield 1
NUE 0.99** 1
SDM 0.88** 0.85** 1
SPDM 0.88** 0.87** 0.98** 1
Pn 0.87** 0.84** 0.97** 0.96** 1
Gs 0.79** 0.72** 0.95** 0.89** 0.91** 1
Tr 0.84** 0.79** 0.91** 0.84** 0.84** 0.92** 1
Ci -0.79** -0.77** -0.91** -0.94** -0.87** -0.82** -0.75** 1
Fv/Fm 0.48 0.43 0.55* 0.41 0.43 0.64** 0.82** -0.31 1
ΦPSII 0.85** 0.79** 0.96** 0.90** 0.92** 0.97** 0.96** -0.80** 0.69** 1
RuBPC 0.91** 0.88** 0.97** 0.96** 0.96** 0.89** 0.88** -0.90** 0.51* 0.92** 1
PEPC 0.81** 0.78** 0.95** 0.93** 0.95** 0.90** 0.84** -0.84** 0.51* 0.89** 0.92** 1
[1] Hawkesford M J. Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci, 2014, 59: 276-283.
pmid: 24882935
[2] 刘兆辉, 薄录吉, 李彦, 孙明, 仲子文, 张英鹏, 井永苹. 氮肥减量施用技术及其对作物产量和生态环境的影响综述. 中国土壤与肥料, 2016, (4): 1-8.
Liu Z H, Bo L J, Li Y, Sun M, Zhong Z W, Zhang Y P, Jing Y P. Effect of nitrogen reduction on crop yield and ecological environment: a review. Soil Fert Sci China, 2016, (4): 1-8. (in Chinese with English abstract)
[3] Liang X, He J Z, Zhang F S, Shen Q R, Wu J S, Young I M, O’Donnell G, Wang L G, Wang E L, Hill J L, Chen D L. Healthy soils for sustainable food production and environmental quality. Front Agric Sci Eng, 2020, 7: 347-355.
doi: 10.15302/J-FASE-2020339
[4] 金书秦, 周芳. 中国的化肥、农药使用量零增长行动: 目标、进展与挑战. 资源与生态学报, 2018, 9(1): 50-58.
Jin S Q, Zhou F. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J Resour Ecol, 2018, 9(1): 50-58. (in Chinese with English abstract)
[5] Liu Z, Gao J, Gao F, Liu P, Zhao B, Zhang J W. Photosynthetic characteristics and chloroplast ultrastructure of summer maize response to different nitrogen supplies. Front Plant Sci, 2018, 9: 576-588.
doi: 10.3389/fpls.2018.00576 pmid: 29765387
[6] Ting J P, Osmond I B. Photosynthetic phosphoenolpyrurate carboxylases. Plant Physiol, 1973, 51: 439-447.
doi: 10.1104/pp.51.3.439 pmid: 16658348
[7] Foyer C C. Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis: basis for a new concept. Plant Physiol, 1992, 100: 7-12.
doi: 10.1104/pp.100.1.7 pmid: 16653003
[8] 马冬云, 郭天财, 宋晓, 王晨阳, 韩巧霞, 岳艳君, 查菲娜. 施氮对冬小麦旗叶RuBP羧化酶活性及叶绿素荧光参数的影响. 西北植物学报, 2010, 30: 2197-2202.
Ma D Y, Guo T C, Song X, Wang C Y, Han Q X, Yue Y J, Zha F N. Effects of nitrogen fertilizer application on RuBP carboxylase activity and chlorophyll fluorescence parameters in flag leaves of winter wheat. Acta Bot Boreal-Occident Sin, 2010, 30: 2197-2202. (in Chinese with English abstract)
[9] 苌建峰, 董朋飞, 王秀玲, 刘卫玲, 李潮海. 氮肥运筹对不同夏玉米品种碳氮代谢协调性的影响. 中国农业科学, 2017, 50: 2282-2293.
Chang J F, Dong P F, Wang X L, Liu W L, Li C H. Effect of nitrogen application on carbon and nitrogen metabolism of different summer maize varieties. Sci Agric Sin, 2017, 50: 2282-2293. (in Chinese with English abstract)
[10] Jrg F A, Houman F B. Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci, 1998, 132: 203-213.
doi: 10.1016/S0168-9452(98)00010-7
[11] Ahanger M A, Qin C, Begum N, Qi M, Dong X X, Ei E M, Sheikh E M, Alatar A A, Zhang L. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol, 2019, 19: 479-490.
doi: 10.1186/s12870-019-2085-3 pmid: 31703619
[12] 王磊, 董树亭, 刘鹏, 张吉旺, 赵斌. 水氮互作对冬小麦光合生理特性和产量的影响. 水土保持学报, 2018, 32: 301-308.
Wang L, Dong S T, Liu P, Zhang J W, Zhao B. Effects of water and nitrogen interaction on physiological and photosynthetic characteristics and yield of winter wheat. J Soil Water Conserv, 2018, 32: 301-308. (in Chinese with English abstract)
[13] 蔡瑞国, 张敏, 戴忠民, 田雷, 王振林. 施氮水平对优质小麦旗叶光合特性和子粒生长发育的影响. 植物营养与肥料学报, 2006, 12: 49-55.
Cai R G, Zhang M, Dai Z M, Tian L, Wang Z L. Effects of nitrogen application rate on flag leaf photosynthetic characteristics and grain growth and development of high-quality wheat. Plant Nutr Fert Sci, 2006, 12: 49-55. (in Chinese with English abstract)
[14] Laury C, Dik H, Erik D B, Roland V, Dominique V D S. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol, 2004, 45: 887-896.
pmid: 15295072
[15] Wu Y W, Li Q, Jin R, Chen W, Liu X L, Kong F L, Ke Y P, Shi H C, Yuan J C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. J Integr Agric, 2019, 18: 1246-1256.
doi: 10.1016/S2095-3119(18)62030-1
[16] 张元帅, 冯伟, 张海艳, 齐双丽, 衡亚蓉, 郭彬彬, 李晓, 王永华, 郭天财. 遮阴和施氮对冬小麦旗叶光合特性及产量的影响. 中国生态农业学报, 2016, 24: 1177-1184.
Zhang Y S, Feng W, Zhang H Y, Qi S L, Heng Y R, Guo B B, Li X, Wang Y H, Guo T C. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat. Chin J Eco-Agric, 2016, 24: 1177-1184. (in Chinese with English abstract)
[17] Tian Z W, Liu X X, Gu S L, Yu J H, Zhang L, Zhang W W, Jiang D, Cao W X, Dai T B. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. J Integr Agric, 2018, 17: 2648-2661.
doi: 10.1016/S2095-3119(18)62086-6
[18] Wu X Y, Kuai B K, Jia J Z, Jing H C. Regulation of leaf senescence and crop genetic improvement. J Integr Plant Biol, 2012, 54: 936-952.
doi: 10.1111/jipb.12005
[19] Liu X, Yin C M, Xiang L, Jiang W T, Xu S Z, Mao Z Q. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC Plant Biol, 2020, 20: 448-474.
doi: 10.1186/s12870-020-02662-3 pmid: 33003994
[20] Li B, Li Q R, Mao X G, Li A, Wang J Y, Chang C Y, Hao C Y, Zhang X Y, Jing R L. Two novel AP2/EREBP transcription factor genes TaPARG have pleiotropic functions on plant architecture and yield-related traits in common wheat. Front Plant Sci, 2016, 7: 1191.
doi: 10.3389/fpls.2016.01191 pmid: 27555860
[21] Tang W, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279-5290.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[22] 郭培武, 赵俊晔, 石玉, 于振文. 水肥一体化条件下施氮量对小麦旗叶叶绿素荧光特性及产量的影响. 麦类作物学报, 2018, 38: 988-994.
Guo P W, Zhao J Y, Shi Y, Yu Z W. Effects of water-fertilizer integration on water use and photosynthetic characteristics of winter wheat. J Triticeae Crops, 2018, 38: 988-994. (in Chinese with English abstract)
[23] 李廷亮, 谢英荷, 洪坚平, 冯倩, 孙丞鸿, 王志伟. 施氮量对晋南旱地冬小麦光合特性、产量及氮素利用的影响. 作物学报, 2013, 39: 704-711.
Li T L, Xie Y H, Hong J P, Feng Q, Sun C H, Wang Z W. Effects of nitrogen application rate on photosynthetic characteristics, yield, and nitrogen utilization in rainfed winter wheat in southern Shanxi. Acta Agron Sin, 2013, 39: 704-711. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00704
[24] Eissa M A, Rekaby S A, Hegab S A, Ragheb H M. Optimum rate of nitrogen fertilization for drip irrigated wheat under semiarid conditions. J Plant Nutr, 2017, 41: 1414-1424.
doi: 10.1080/01904167.2018.1454956
[25] Tao R, Li J, Hu B W, Shah J A, Chu G X. A 2-year study of the impact of reduced nitrogen application combined with double inhibitors on soil nitrogen transformation and wheat productivity under drip irrigation. J Sci Food Agric, 2020, 101: 1772-1781.
doi: 10.1002/jsfa.10791
[26] Racker E. Ribulose diphosphate carboxylase from spinach leaves. In: Colowick S P, Kaplan N O, eds. Methods in Enzymology. New York: Academic Press, 1962. pp 266-278.
[27] 施教耐, 吴敏贤, 查静娟. 植物磷酸烯醇式丙酮酸羧化酶的研究: I. PEP羧化酶同功酶的分离和变构特性的比较. 植物生理学报, 1979: 225-235.
Shi J N, Wu M X, Zha J J. Study on plant phosphoenolpyruvate carboxylase: I. Isolation of PEP carboxylase isoenzyme and comparison of allosteric characteristics. Plant Physiol J, 1979: 225-235. (in Chinese with English abstract)
[28] Gan Y T, Liang C, Chai Q, Lemke R L, Campbell C A, Zentner R P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat Commun, 2014, 5: 5012.
doi: 10.1038/ncomms6012 pmid: 25405548
[29] 唐湘如. 施氮对饲用杂交稻产量和蛋白质含量的影响及其机理研究. 杂交水稻, 2000, (2): 36-39.
Tang X R. Study on the effect and mechanism of nitrogen application on the yield and protein content of forage hybrid rice. Hybrid Rice, 2000, (2): 36-39. (in Chinese with English abstract)
[30] Li Y P, Li H B, Li Y Y, Zhang S Q. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Acta Agron Sin, 2017, 5: 231-239.
[31] Iram S, Sajad H, Muhammad A R, Nasir I, Muhammad A A, Ali R, Fan Y F, Maryam M, Muhammad S, Muhammad A, Abdul M, Yang W Y, Yang F. Crop photosynthetic response to light quality and light intensity. J Integr Agric, 2021, 20: 4-23.
doi: 10.1016/S2095-3119(20)63227-0
[32] 史辛凯, 于振文, 赵俊晔, 石玉, 王西芝. 施氮量对高产小麦光合特性、干物质积累分配与产量的影响. 麦类作物学报, 2021, 41: 713-721.
Shi X K, Yu Z W, Zhao J Y, Shi Y, Wang X Z. Effect of nitrogen application ration photosynthetic characteristics, dry matter accumulation and distribution and yield of high-yielding winter wheat. J Triticeae Crops, 2021, 41: 713-721. (in Chinese with English abstract)
[33] 李欣欣, 石祖梁, 王久臣, 王飞, 徐志宇, 江荣风. 施氮量和种植密度对稻茬晚播小麦干物质积累及光合特性的影响. 华北农学报, 2020, 35(5): 140-148.
doi: 10.7668/hbnxb.20191204
Li X X, Shi Z L, Wang J C, Wang F, Xu Z Y, Jiang R F. Effects of nitrogen application amount and planting density on dry matter accumulation and flag leaf photosynthetic characteristics for late-sowing wheat in rice-wheat rotation. Acta Agric Boreali-Sin, 2020, 35(5): 140-148. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20191204
[34] 坚天才, 吴宏亮, 康建宏, 李鑫, 刘根红, 陈倬, 高娣. 氮素缓解春小麦花后高温早衰的荧光特性研究. 中国农业科学, 2021, 54: 3355-3368.
Jian T C, Wu H L, Kang J H, Li X, Liu G H, Chen Z, Gao D. Fluorescence characteristics study of nitrogen in alleviating premature senescence of spring wheat at high temperature after anthesis. Sci Agric Sin, 2021, 54: 3355-3368. (in Chinese with English abstract)
[35] Mu X H, Chen Q W, Chen F J, Yuan L X, Mi G H. A RNA-Seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf. Int J Mol Sci, 2017, 18: 2624.
doi: 10.3390/ijms18122624
[36] 马建辉, 张利霞, 姜丽娜, 王亚帆, 齐冰玉, 李春喜. 氮肥和密度对冬小麦光合生理和物质积累的影响. 麦类作物学报, 2015, 35: 674-680.
Ma J H, Zhang L X, Jiang L N, Wang Y F, Qi B Y, Li C X. Effect of nitrogen and density on photosynthetic physiology and matter accumulation of winter wheat. J Triticeae Crops, 2015, 35: 674-680. (in Chinese with English abstract)
[37] Sui Y H, Gao J P, Shang Q Y. Characterization of nitrogen metabolism and photosynthesis in a stay-green rice cultivar. Plant Soil Environ, 2019, 65: 283-289.
doi: 10.17221/202/2019-PSE
[38] 宋明丹, 李正鹏, 冯浩. 不同水氮水平冬小麦干物质积累特征及产量效应. 农业工程学报, 2016, 32(2): 119-126.
Song M D, Li Z P, Feng H. Effects of irrigation and nitrogen regimes on dry matter dynamic accumulation and yield of winter wheat. TCSAE, 2016, 32(2): 119-126 (in Chinese with English abstract)
[39] 张小涛, 黄玉芳, 马晓晶, 叶优良. 播种量和施氮量对不同基因型冬小麦干物质累积、转运及产量的影响. 植物生理学报, 2017, 53: 1067-1076.
Zhang X T, Huang Y F, Ma X J, Ye Y L. Effects of seeding rate and nitrogen level on dry matter accumulation, translocation and grain yield in two genotypes of winter wheat. Plant Physiol J, 2017, 53: 1067-1076. (in Chinese with English abstract)
[40] 张磊, 邵宇航, 谷世禄, 胡航, 张微微, 田中伟, 姜东, 戴廷波. 减量施氮下基肥后移对南方冬小麦产量和氮素利用效率的影响. 应用生态学报, 2016, 27: 3953-3960.
doi: 10.13287/j.1001-9332.201612.020
Zhang L, Shao Y H, Gu S L, Hu H, Zhang W W, Tian Z W, Jiang D, Dai T B. Effects of postponed basal nitrogen application with reduced nitrogen rate on grain yield and nitrogen use efficiency of south winter wheat. Chin J Appl Ecol, 2016, 27: 3953-3960. (in Chinese with English abstract)
[1] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[2] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[3] 陶士宝, 柯健, 孙杰, 尹传俊, 朱铁忠, 陈婷婷, 何海兵, 尤翠翠, 郭爽爽, 武立权. 长江中下游地区不同穗型中籼杂交稻高产群体农艺特征[J]. 作物学报, 2023, 49(2): 511-525.
[4] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[5] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响[J]. 作物学报, 2023, 49(2): 472-484.
[6] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[7] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[8] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制[J]. 作物学报, 2023, 49(1): 286-294.
[9] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[10] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[11] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[12] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[13] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[14] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[15] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .