欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2949-3295.doi: 10.3724/SP.J.1006.2023.24224

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

亚麻PLA1基因家族的鉴定及表达分析

赵丽蓉(), 李雯, 王利民, 齐燕妮, 李闻娟, 谢亚萍, 党照, 赵玮, 张建平()   

  1. 甘肃省农业科学院作物研究所, 甘肃兰州 730070
  • 收稿日期:2022-10-09 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-23
  • 通讯作者: 张建平, E-mail: zhangJPzw3@gsagr.ac.cn
  • 作者简介:E-mail: 1744245723@qq.com
  • 基金资助:
    甘肃省农业科学院现代生物育种项目(2020GAAS08);甘肃省农业科学院现代生物育种项目(2022GAAS04);财政部和农业农村部国家现代农业产业技术体系建设专项(油料), 甘肃省科技计划项目(21JR7RA722);财政部和农业农村部国家现代农业产业技术体系建设专项(油料), 甘肃省科技计划项目(21JR1RA354);甘肃省重大科技项目(21ZD4NA022-02);安宁区科技计划项目(2022-JB-10)

Identification and relative expression pattern of PLA1 gene family in flax

ZHAO Li-Rong(), LI Wen, WANG Li-Min, QI Yan-Ni, LI Wen-Juan, XIE Ya-Ping, DANG Zhao, ZHAO Wei, ZHANG Jian-Ping()   

  1. Institute of Crops, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2022-10-09 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-23
  • Supported by:
    Modern Biology Breeding Project of Gansu Academy of Agricultural Sciences(2020GAAS08);Modern Biology Breeding Project of Gansu Academy of Agricultural Sciences(2022GAAS04);China Agriculture Research System (Oil) of MOF and MARA, the Science and Technology Project of Gansu Province(21JR7RA722);China Agriculture Research System (Oil) of MOF and MARA, the Science and Technology Project of Gansu Province(21JR1RA354);Major Science and Technology Project of Gansu Province(21ZD4NA022-02);Science and Technology Planing Project of Anning District(2022-JB-10)

摘要:

磷脂酶A1 (Phospholipase A1, PLA1)在植物生长发育及胁迫反应中发挥着重要作用, 但目前关于PLA1在亚麻中的鉴定与表达特征尚未见报道。本研究利用生物信息学方法对包括亚麻在内的7个物种PLA1基因家族进行鉴定, 分析了亚麻PLA1 (LuPLA1)的序列特征、系统进化关系、顺式作用元件、共线性关系及其复制事件, 并利用转录组数据分析了其在不同遗传背景、不同器官中的表达模式, 利用qRT-PCR分析了其在不同组织、不同发育时期及胁迫处理下的表达模式。结果表明, 在亚麻、拟南芥、玉米、水稻、大豆、蓖麻及木薯基因组中分别鉴定到14、21、15、20、41、18和35个PLA1成员; LuPLA1基因分布于8条染色体上。序列特征分析发现, 除LuPLA1-7LuPLA1-10外, 其他家族成员都具有内含子且多数含有1个内含子; LuPLA1蛋白序列长度为388~1759 aa, 等电点为5.99~9.19, 分子量为41.55~192.61 kD, 均为亲水性蛋白, 大多数定位于液泡, 含有4~25个Motif。系统进化分析将PLA1蛋白分为4个分支, 其中第IV分支PLA1成员数量最多。共线性分析表明, LuPLA1在拟南芥、玉米、水稻、木薯及大豆中均具有同源基因且与大豆、木薯的同源基因最多。LuPLA1家族成员中共有2对基因发生串联复制, 7对基因发生片段复制, 且都经历了纯化选择。转录组分析发现大多LuPLA1成员表现为器官特异性表达。LuPLA1启动子区含大量激素与逆境响应相关元件, qRT-PCR分析进一步证实LuPLA1基因受激素、干旱、高盐、低温及高温诱导表达。其中LuPLA1-1受IAA诱导表达; LuPLA1-1LuPLA1-6受NAA诱导表达; LuPLA1-1LuPLA1-5LuPLA1-6受GA3诱导表达; LuPLA1-12/14受NaCl和PEG诱导表达; 除LuPLA1-2/4外, 其余基因均受高温诱导表达; 所有LuPLA1受低温诱导表达, 对低温的响应最为明显。本研究为进一步解析LuPLA1基因家族的功能奠定了基础。

关键词: 亚麻, LuPLA1, 基因家族, 表达分析

Abstract:

Phospholipase A1 (PLA1) plays an important role in plant growth and development and stress responses. However, there is no function study of PLA1 in flax. In this study, we identified the PLA1 gene family in seven species including flax by bioinformatics, and analyzed the sequence characteristics, phylogenetic evolution, cis-acting elements, collinearity, and replication events of PLA1 (LuPLA1) genes in flax. Transcriptome data were used to analyze the relative expression patterns in different genetic backgrounds and organs, and qRT-PCR was used to analyze the relative expression patterns in different tissues and developmental stages, and under different stress treatments. The results showed that there were 14, 21, 15, 20, 41, 18, and 35 PLA1 members identified in flax, Arabidopsis, maize, rice, soybean, castor, and cassava, respectively. LuPLA1 were distributed on 8 chromosomes. Sequence analysis showed that except for LuPLA1-7 and LuPLA1-10, all the other members had introns and most of them had one intron, with protein length of 388-1759 aa, isoelectric point of 5.99-9.19, and molecular weight of 41.55-192.61 kD. All the LuPLA1 proteins were hydrophilic, and most of them localized in vacuoles and contained 4-25 motifs. Phylogenetic analysis revealed that the PLA1 proteins were divided into four clades, and clade IV had the largest number of PLA1 members. Collinearity analysis indicated that LuPLA1 had homologous genes in Arabidopsis, maize, rice, cassava, and soybean, and had the most homologous genes with soybean and cassava. There were two tandem duplicated gene pairs and seven segment duplicated genes pairs of LuPLA1 family members, and all the duplicated genes underwent purification selection. Transcriptome analysis showed that most LuPLA1 members exhibited organ-specific expression patterns. The promoter regions of LuPLA1 contained a large number of hormone and stress response elements. The qRT-PCR further confirmed that the relative expression of LuPLA1 genes were induced by hormone, drought, high salt, low temperature, and high temperature. LuPLA1-1 was induced by IAA. LuPLA1-1 and LuPLA1-6 were induced by NAA. LuPLA1-1, LuPLA1-5, and LuPLA1-6 were induced by GA3. LuPLA1-12/14 was induced by NaCl and PEG. Except for LuPLA1-2/4, the other genes were induced by high temperature. All LuPLA1 members were induced by low temperature, and the response to low temperature was the most obvious. This study laid a foundation for further analysis of the function of LuPLA1 gene family.

Key words: flax, LuPLA1, gene family, the relative expression pattern

附表1

qRT-PCR引物"

基因名称
Gene name
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (5′-3′)
GAPDH CTTTACCCTCAGCAAATCCG AGGTTCTTCCCGCTCTCAAT
PLA1-1 TCTTCCCTCAGAACAGAGGTGTATTT AGTCTTGTTGGACCCTGTCCCTAG
PLA1-2/4 CCTCTTCTCGTCCCTTGCTTTGA GGAGAAGAGCAGGGAACGAAACT
PLA1-3/11 ATTTCCGTTTATGGGAGGTTTGCC TAAAGGCAAATACCCTCCAAACGG
PLA1-5 CTTGATGGGGAGAATGTGAGGA GTTGGAGCTGCGGAAGTTGATA
PLA1-6 GCTTGATGGGAAGGATGTGAGGAT AGAGGGCGTTTGTTGTCATTTGGT
PLA1-7/10 CGAATTGACCCTAAAGGACACG GCTTAACTGGGATTTCCTGTGC
PLA1-8/9 GAACAGCGACGAATAATCCAACG CTTGTCGCTGCTTATTAGGTTGC
PLA1-12/14 ATGGGAGGTTTGCCGGGCTAC TACCCTCCAAACGGCCCGATG

附表2

转录组数据登录号"

名称
Name
登录号
Accession number
名称
Name
登录号
Accession number
Longya-10-fruit-1 SRR8281918 Heiya-14-fruit-1 SRR8281912
Longya-10-fruit-2 SRR8281919 Heiya-14-fruit-2 SRR8281913
Longya-10-stem-1 SRR8281920 Heiya-14-stem-1 SRR8281916
Longya-10-stemt-2 SRR8281921 Heiya-14-stem-2 SRR8281917

图1

LuPLA1基因染色体定位 橘色线条代表片段复制, 红色矩形代表串联复制。"

表1

亚麻 LuPLA1基因复制分析"

基因对
Gene pairs
复制事件
Duplication events
同义替换率
Ks
非同义替换率
Ka
Ka/Ks 选择类型
Selection type
分歧时间
Divergence time (Mya)
LuPLA1-7/LuPLA1-8 串联复制
Tandem duplication
0.5411 0.1419 0.2622 纯化选择
Purifying selection
44.3525
LuPLA1-9/LuPLA1-10 串联复制
Tandem duplication
0.5093 0.1448 0.2843 纯化选择
Purifying selection
41.7459
LuPLA1-2/LuPLA1-4 片段复制
Segmental duplication
0.1189 0.0213 0.1791 纯化选择
Purifying selection
9.7459
LuPLA1-3/LuPLA1-11 片段复制
Segmental duplication
0.1217 0.0061 0.0501 纯化选择
Purifying selection
9.9754
LuPLA1-3/LuPLA1-12 片段复制
Segmental duplication
1.0065 0.0692 0.0687 纯化选择
Purifying selection
82.5000
LuPLA1-7/LuPLA1-9 片段复制
Segmental duplication
0.5776 0.1400 0.2424 纯化选择
Purifying selection
47.3443
LuPLA1-11/LuPLA1-12 片段复制
Segmental duplication
0.9443 0.0758 0.0803 纯化选择
Purifying selection
77.4016
LuPLA1-11/LuPLA1-14 片段复制
Segmental duplication
0.9403 0.0770 0.0819 纯化选择
Purifying selection
77.0738
LuPLA1-12/LuPLA1-14 片段复制
Segmental duplication
0.0845 0.0135 0.1598 纯化选择
Purifying selection
6.9262

图2

亚麻基因组内LuPLA1基因共线性及其与其他物种间的共线性"

表2

LuPLA1家族成员基本特征"

基因名称
Gene name
基因号
Gene ID
染色体位置
Chromosome
location
外显子数量
No. of
exons
蛋白序列长度
Protein
length (aa)
分子量
Molecular
weight (kD)
等电点
Isoelectric point
亚细胞定位
Subcellular
location
LuPLA1-1 L.us.o.m.scaffold73.66 Chr1:21780419-
21783081(-)
7 459 50.96 5.99 液泡
Vacuole
LuPLA1-2 L.us.o.m.scaffold17.61 Chr5:5454111-
5456030(-)
2 388 41.55 8.08 液泡
Vacuole
LuPLA1-3 L.us.o.m.scaffold255.68 Chr5:17092681-
17095829(-)
2 463 50.92 8.00 液泡
Vacuole
LuPLA1-4 L.us.o.m.scaffold11.49 Chr6:4217828-
4219482(+)
2 390 41.81 7.52 液泡
Vacuole
LuPLA1-5 L.us.o.m.scaffold100.2 Chr7:7572800-
7576425(+)
7 400 44.50 6.97 液泡
Vacuole
LuPLA1-6 L.us.o.m.scaffold284.7 Chr7:7630026-
7633875(+)
7 391 43.23 6.92 液泡
Vacuole
LuPLA1-7 L.us.o.m.scaffold219.29 Chr8:17228540-
17230314(+)
1 483 52.59 9.19 细胞膜, 液泡
Cell membrane,
vacuole
LuPLA1-8 L.us.o.m.scaffold219.27 Chr8:17242561-
17243859(+)
2 421 45.31 8.99 液泡
Vacuole
LuPLA1-9 L.us.o.m.scaffold253.44 Chr11:1866126-
1867424(-)
2 421 45.30 8.99 液泡
Vacuole
LuPLA1-10 L.us.o.m.scaffold253.45 Chr11:1884093-
1885373(-)
1 426 45.90 9.15 叶绿体, 液泡
Chloroplast,
vacuole
LuPLA1-11 L.us.o.m.scaffold144.142 Chr11:13906282-
13908918(-)
2 463 50.94 7.55 叶绿体, 液泡
Chloroplast,
vacuole
LuPLA1-12 L.us.o.m.scaffold263.24 Chr12:5589259-
5592930(+)
2 453 49.49 7.01 液泡
Vacuole
LuPLA1-13 L.us.o.m.scaffold220.83 Chr15:8920678-
8929774(-)
28 1759 192.61 6.80 液泡
Vacuole
LuPLA1-14 L.us.o.m.scaffold0.620 Chr15:11287238-
11289213(-)
2 452 49.43 6.97 叶绿体, 液泡
Chloroplast,
vacuole

附图1

亚麻PLA1家族成员的亲水性与疏水性预测"

附图2

LuPLA1基因编码的蛋白质的二级结构"

图3

不同物种PLA1家族系统进化树"

图4

LuPLA1基因家族的系统进化树、保守基序及基因结构分析"

图5

LuPLA1基因家族各成员启动子区顺式作用元件"

图6

LuPLA1基因在不同品种、不同器官中的表达量热图"

附图3

LuPLA1基因在陇亚15号不同时期种子及花药中的表达模式"

图7

LuPLA1基因在IAA (A)和NAA (B)胁迫下的表达模式 不同小写字母表示在0.05水平具有显著性差异。"

图8

LuPLA1基因在GA3 (A)和NaCl (B)胁迫下的表达模式 不同小写字母表示在0.05概率水平差异显著。"

图9

LuPLA1基因在PEG (A)和不同温度(B)胁迫下的表达模式 不同小写字母表示在0.05概率水平差异显著。"

[1] Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol, 2010, 10: 71.
doi: 10.1186/1471-2229-10-71
[2] 党照, 张建平, 王利民, 李闻娟, 齐燕妮, 谢亚萍, 赵玮. 胡麻新品种陇亚15号选育技术报告. 中国麻业科学, 2020, 42(4): 145-149.
Dang Z, Zhang J P, Wang L M, Li W J, Qi Y N, Xie Y P, Zhao W. Technical report on breeding of a new flax variety Longya 15. Plant Fiber Sci China, 2020, 42(4): 145-149 (in Chinese with English abstract).
[3] 米智, 刘荔贞, 李慧, 张弘驰. 响应面法优化胡麻籽饼粕黄酮提取工艺及抗氧化活性的研究. 中国粮油学报, 2022, 37(3): 1-11.
Mi Z, Liu L Z, Li H, Zhang H C. Optimization of flavonoids extraction and antioxidant activity of flax seed cake by response surface method. J Chin Cereals Oils Assoc, 2022, 37(3): 1-11 (in Chinese with English abstract).
[4] 赵利, 王斌, 苗红梅, 马琴. 胡麻种质资源籽粒表型与品质性状评价及其相关性研究. 植物遗传资源学报, 2020, 21: 243-251.
doi: 10.13430/j.cnki.jpgr.20191107001
Zhao L, Wang B, Miao H M, Ma Q. Evaluation and correlation study on grain phenotype and quality traits of flax germplasm resources. J Plant Genet Resour, 2020, 21: 243-251 (in Chinese with English abstract).
[5] 杨阳, 王晶懋. 百合响应非生物胁迫的分子机制研究. 分子植物育种, 2018, 16: 5046-5054.
Yang Y, Wang J M. Molecular mechanism of lily response to abiotic stress. Mol Plant Breed, 2018, 16: 5046-5054 (in Chinese with English abstract).
[6] Gilles L M, Khaled A, Laffaire J B, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J P, Rogowsky P M, Widiez T. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J, 2017, 36: 707-717.
doi: 10.15252/embj.201796603 pmid: 28228439
[7] 葛金涛, 王江英, 汤雪燕, 腾年军, 朱朋波, 孙明伟, 赵统利, 邵小斌. 百合叶片磷脂酶基因家族转录组学分析. 江苏农业科学, 2022, 50(3): 36-42.
Ge J T, Wang J Y, Tang X Y, Teng N J, Zhu P B, Sun M W, Zhao T L, Shao X B. Transcriptomic analysis of the phospholipase gene family in lily leaves. Jiangsu Agric Sci, 2022, 50(3): 36-42 (in Chinese with English abstract).
[8] Chapman K D. Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci, 1998, 3: 419-426.
doi: 10.1016/S1360-1385(98)01326-0
[9] Scherer G F E. Activation of phospholipase A2, by auxin and mastoparan in hypocotyl segments from zucchini and sunflower. J Plant Physiol, 1995, 145: 483-490.
doi: 10.1016/S0176-1617(11)81775-X
[10] Günther F, Scherer E, Arnold B. Inhibitors of animal phospholipase A2 enzymes are selective inhibitors of auxin-dependent growth. Implications for auxin-induced signal transduction. Planta, 1997, 202: 462-469.
doi: 10.1007/s004250050150
[11] Fan L, Wang Z X. Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell, 1997, 9: 2183-2196.
doi: 10.1105/tpc.9.12.2183 pmid: 9437863
[12] 苏燕南. 磷脂酶A1基因的克隆和原核表达. 安徽工程大学硕士学位论文,安徽芜湖, 2013.
Su Y N. Cloning and Prokaryotic Expression of Phospholipase A1 Gene. MS Thesis of Anhui Polytechnic University, Wuhu, Anhui, China, 2013 (in Chinese with English abstract).
[13] 程实. 非钙离子依赖型磷脂酶A1的异源表达及制备. 江南大学博士学位论文,江苏无锡, 2021.
Cheng S. Heterologous Expression and Preparation of Non Calcium Ion Dependent Phospholipase A1. PhD Dissertation of Jiangnan University, Wuxi, Jiangsu, China, 2021 (in Chinese with English abstract).
[14] 安炎黄. 磷脂酶参与冬凌草甲素对拟南芥的化感潜能作用. 西北师范大学硕士学位论文,甘肃兰州, 2019.
An Y H. Phospholipase Involved in the Allelopathic Effect of Rubescens on Arabidopsis thaliana. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2019 (in Chinese with English abstract).
[15] Kenji M, Sachiko F, Miho I, Tadahiko K. A tomato lipase homologous to DAD1 (LeLID1) is induced in post-germinative growing stage and encodes a triacylglycerol lipase. FEBS Lett, 2004, 569: 195-200.
doi: 10.1016/j.febslet.2004.05.064 pmid: 15225633
[16] Nishihara M, Kamata M, Koyama T, Yazawa K. New Phospholipase A1-producing bacteria from a marine fish. Mar Biotechnol, 2008, 10: 382-387.
doi: 10.1007/s10126-007-9074-5 pmid: 18293038
[17] Tavernier E, Pugin A. Phospholipase activities associated with the tonoplast from Acer pseudoplatanus cells: identification of a phospholipase A1 activity. Biochim Biophys Acta, 1995, 1233: 118-122.
pmid: 7865536
[18] Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell, 2001, 13: 2191-2209.
doi: 10.1105/tpc.010192 pmid: 11595796
[19] Noiriel A, Benveniste P, Banas A, Stymne S, Bouvier-Navé P. Expression in yeast of a novel phospholipase A1 cDNA from Arabidopsis thaliana. Eur J Biochem, 2004, 271: 3752-3764.
doi: 10.1111/ejb.2004.271.issue-18
[20] Seo Y S, Eun Y K, Hyung G M, Woo T K. Heterologous expression, and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog. Plant J Cell Mol Biol, 2008, 53: 895-908.
doi: 10.1111/j.1365-313X.2007.03380.x
[21] 姜惠娜, 敬松, 李晗玉, 佘木子, 张新飞, 呼天明, 付娟娟, 苗彦军. 西藏野生垂穗披碱草EnPLA1基因克隆与表达分析. 草地学报, 2021, 29: 2141-2148.
doi: 10.11733/j.issn.1007-0435.2021.10.004
Jiang H N, Jing S, Li H Y, She M Z, Zhang X F, Hu T M, Fu J J, Miao Y J. Cloning and expression analysis of EnPLA1 gene in wild Flagellae from Xizang. Acta Agrest Sin, 2021, 29: 2141-2148 (in Chinese with English abstract).
[22] Hyun Y, Choi S, Hwang H J, Yu J, Nam S J, Ko J, Park J Y, Seo Y S, Kim E Y, Ryu S B, Kim W O, Lee Y H, Kang H, Lee I. Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell, 2008, 14: 183-192.
doi: 10.1016/j.devcel.2007.11.010 pmid: 18267087
[23] Liu C X, Li X, Meng D X, Zhong Y, Chen C, Dong X, Xu X W, Chen B J, Li W, Li L, Tian X L, Zhao H M, Song W B, Luo H S, Zhang Q H, Lai J S, Jin W W, Yan J B, Chen S J. A 4-bp insertion at ZmPLA1encoding a putative phospholipase a generates haploid induction in maize. Mol Plant, 2017, 10: 520-522.
doi: 10.1016/j.molp.2017.01.011
[24] 文钦, 贾思思, 王加峰, 黄翠红, 王慧, 陈志强, 郭涛. 水稻单倍体诱导基因OsMATL突变体的创制与分析. 作物学报, 2021, 47: 816-825.
Wen Q, Jia S S, Wang J F, Huang C H, Wang H, Chen Z Q, Guo T. Creation and analysis of OsMATL mutant of rice haploid inducible gene. Acta Agron Sin, 2021, 47: 816-825 (in Chinese with English abstract).
[25] Liu H Y, Wang K, Jia Z M, Gong Q, Lin Z S, Du L P, Pei X W, Ye X G. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot, 2020, 71: 1337-1349.
doi: 10.1093/jxb/erz529
[26] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452
[27] 张丹丹, 杨瑶君, 江纳, 付春. 黄藤Dof家族的全基因组鉴定及系统进化分析. 西南林业大学学报(自然科学), 2021, 41(6): 126-138.
Zhang D D, Yang Y J, Jiang N, Fu C. Genome-wide identification and phylogenetic analysis of the Dof family of Rattan japonica. J Southwest For Univ (Nat Sci), 2021, 41(6): 126-138 (in Chinese with English abstract).
[28] 刘艳丽, 周媛, 曹丹, 马林龙, 龚自明, 金孝芳. 基于茶蛋白质组学数据分析植物亚细胞定位预测软件的应用. 植物科学学报, 2020, 38: 671-677.
Liu Y L, Zhou Y, Cao D, Ma L L, Gong Z M, Jin X F. Application of plant subcellular localization prediction software based on tea proteomic data analysis. Plant Sci J, 2020, 38: 671-677 (in Chinese with English abstract).
[29] 冷非凡, 罗文, 李渊利, 孙尚琛, 王永刚. 嗜铁钩端螺旋菌中铁硫簇相关蛋白的生物信息学分析. 基因组学与应用生物学, 2018, 37: 5296-5303.
Leng F F, Luo W, Li Y L, Sun S C, Wang Y G. Bioinformatics analysis of iron-sulfur cluster related proteins in Helicobacter ferrophila. Genomics Appl Biol, 2018, 37: 5296-5303 (in Chinese with English abstract).
[30] 唐永凯, 贾永义. 荧光定量PCR数据处理方法的探讨. 生物技术, 2008, (3): 89-91.
Tang Y K, Jia Y Y. Discussion on data processing methods of fluorescence quantitative PCR. Biotechnology, 2008, (3): 89-91 (in Chinese with English abstract).
[31] 张群, 贾倩茹, 章文华. 磷脂介导的生长素信号转导研究进展. 南京农业大学学报, 2020, 43(2): 195-203.
Zhang Q, Jia Q R, Zhang W H. Research progress in phospholipid-mediated auxin signal transduction. J Nanjing Agric Univ, 2020, 43(2): 195-203 (in Chinese with English abstract).
[32] Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M L, Green J, Chen Z Y, McCuiston J, Wang W L, Liebler T, Bullock P, Martin B. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 2017, 7639: 105-109.
[33] Zhu S H, Wang X Y, Chen W, Yao J B, Li Y, Fang S T, Lyu Y J, Li X X, Pan J W, Liu C Y, Li Q L, Zhang Y S. Cotton DMP gene family: characterization, evolution, and expression profiles during development and stress. Int J Biol Macromol, 2021, 183: 1257-1269.
doi: 10.1016/j.ijbiomac.2021.05.023 pmid: 33965485
[1] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[2] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[3] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182.
[4] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[5] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[6] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[7] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[8] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[9] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[10] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[11] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[12] 赵晓鑫, 黄烁淇, 谭文勃, 兴旺, 刘大丽. 甜菜HIPPs基因家族鉴定与镉胁迫下的表达分析[J]. 作物学报, 2023, 49(12): 3302-3314.
[13] 朱金勇, 刘震, 曾钰婷, 李志涛, 陈丽敏, 李泓阳, 史田斌, 张俊莲, 白江平, 刘玉汇. 马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析[J]. 作物学报, 2023, 49(11): 2978-2990.
[14] 陈吴钧, 刘江栋, 蒋凯旋, 王幼平, 蒋金金. 甘蓝型油菜BnKNOX基因家族的鉴定与分析[J]. 作物学报, 2023, 49(11): 2991-3006.
[15] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .