欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 199-208.doi: 10.3724/SP.J.1006.2024.34057

• 耕作栽培·生理生化 • 上一篇    下一篇

基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定

谭志新1(), 谢留伟1, 李洪戈2, 李芳军1, 田晓莉1,*(), 李召虎1   

  1. 1中国农业大学农学院作物化控研究中心, 北京 100193
    2中国农业科学院棉花研究所品种资源研究室, 河南安阳 455000
  • 收稿日期:2023-03-18 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-24
  • 通讯作者: *田晓莉, E-mail: tianxl@cau.edu.cn
  • 作者简介:E-mail: tzhixin2898@163.com
  • 基金资助:
    本研究由国家转基因生物新品种培育重大专项: 转基因耐旱耐盐棉花新品种培育基金项目(2016ZX08005-004-008)

Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage

TAN Zhi-Xin1(), XIE Liu-Wei1, LI Hong-Ge2, LI Fang-Jun1, TIAN Xiao-Li1,*(), LI Zhao-Hu1   

  1. 1Crop Chemical Control Research Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2Variety Resources Research Laboratory, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
  • Received:2023-03-18 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-24
  • Contact: *E-mail: tianxl@cau.edu.cn
  • Supported by:
    National Major Project for Developing New GM Crops: Cultivation of New Varieties of Transgenic Drought-tolerant and Salt-tolerant Cotton(2016ZX08005-004-008)

摘要:

挖掘和利用钾高效种质资源、提高钾营养利用效率是解决棉花生产中缺钾问题的重要途经, 为建立快速可靠的耐低钾评价体系, 应用决策评价模型AHP-隶属函数法在子叶期对384份棉花种质材料进行耐低钾评价。结果表明: 缺钾条件下(0.03 mmol L-1), 子叶缺钾斑相对面积的变异系数最大(96.24%), 植株干重变异系数最小(14.73%), 子叶与下胚轴夹角、根长、根表面积、根体积、K+浓度、K+积累量的变异系数在15.72%~31.52%之间。子叶与下胚轴夹角与缺钾斑相对面积显著负相关; 根系形态与植株干重和K+积累量显著正相关。经AHP-隶属函数法评价, 384份棉花种质材料的综合评价值C分布于0.25~0.79之间, 其中无极一枝花(C=0.7868)耐低钾能力最强, 巴西014 (C=0.2451)耐低钾能力最弱。系统聚类显示, 高度(C值为0.74~0.79)和中度(C值为0.33~0.69)耐低钾材料的占比分别为1.30%和95.31%, 低钾敏感材料(C值为0.25~0.33)占比3.39%。种子K+浓度与子叶期耐低钾能力之间的相关性不显著。本研究完善了棉花耐低钾种质资源筛选体系, 对384份供试种质的子叶期耐低钾能力进行了鉴定, 筛选出5份耐低钾能力强的种质(无极一枝花、棕1-61、黑山棉1号、秦荔514、苏联棉78系), 研究具有一定的理论和应用价值。

关键词: 棉花, 子叶缺钾斑, 根系, 干重, 钾含量, 隶属函数

Abstract:

In order to establish a rapid and reliable evaluation system for low-potassium (K) tolerance in cotton, the combination of decision evaluation model AHP and membership function method was used to evaluate the 384 cotton germplasm resources at the cotyledonary stage. The results showed that, under K deficiency (0.03 mmol L-1), the coefficient of variation of the relative area of K deficiency spots on cotyledons was the largest (96.24%), the coefficient of variation of plant dry weight was the smallest (14.73%). This trait of angle between cotyledons and hypocotyls, root length, root surface area, root volume, K+ concentration, and K+ accumulation ranged from 15.72% to 31.52%. The angle between cotyledons and hypocotyl was significantly negatively correlated with the relative area of K deficiency spots. The characteristics of root morphology were positively correlated with plant dry weight and K+ accumulation. According to the evaluation of AHP-membership function method, the comprehensive evaluation C-value of 384 cotton germplasms varied from 0.25 to 0.79. Among which Wujiyizhihua (C-value = 0.7868) had the strongest resistance to low K, and Brazil 014 (C-value = 0.2451) had the lowest resistance to low K. The results of systematic clustering showed that the proportions of highly (C-value > 0.74) and moderately (0.33 < C-value < 0.69) low-K tolerant germplasms were 1.30% and 95.31%, respectively; and the proportion of low-potassium-sensitive (C-value < 0.33) germplasms was 3.39%. The correlation between seed K+ concentration and low K tolerance of cotton at cotyledonary stage was not significant difference. In this study, the screening system of low-potassium tolerant germplasm resources of cotton was improved, the cotyledonary stage potassium tolerance of 384 test germplasms was identified, and 5 germplasms with strong potassium tolerance (Wujiyizhihua, Brown 1-61, Black Mountain Cotton 1, Qinli 514, Soviet Cotton 78) were screened, which provided the theoretical and application value.

Key words: cotton, potassium deficiency spots on cotyledons, roots, biomass, potassium content, membership function

附表1

种质材料品种名称及其耐低钾能力排名"

编号
Number
品种名称
Variety name
综合评价值C
Comprehensive evaluation value C
编号
Number
品种名称
Variety name
综合评价值C
Comprehensive evaluation value C
K1 中远9114 Zhongyuan 9114 0.5405 K2 华中远92 Huazhongyuan 92 0.4329
K3 冀A17 JiA17 0.5808 K4 晋棉21 Jingmian 21 0.5899
K5 太原02-25 Taiyuan 02-25 0.3265 K6 太原02-47 Taiyuan 02-47 0.5299
K7 晋农大远2-3 Jinnongdayuan 2-3 0.6874 K8 苏远04-60 Suyuan 04-60 0.5838
K9 苏远04-156 Suyuan 04-156 0.4610 K10 远2918 Yuan 2918 0.6571
K11 AC-241 0.6153 K12 PD0111 0.5052
K13 PD2164 0.3656 K14 FJA 0.5926
K15 PD3249 0.4088 K16 PD9364 0.3221
K17 FTA 0.5316 K18 AC239 0.3489
K19 PD4381 0.5954 K20 PD9232 0.4243
K21 PD9223 0.4383 K22 苏联棉143 Soviet cotton 143 0.5660
K23 Pambe 0.5274 K24 G.mexicanum 0.4788
K25 6086 0.4266 K26 75078-1 0.3821
K27 150夫 150 Fu 0.4001 K28 塔什干3 Tashkent 3 0.3680
K29 Local zavodskaya smes’ 0.4963 K30 Jan-90 0.4086
K31 402 0.4430 K32 洛克特77 Lockett 77 0.5147
K33 迪克西金 Dixikin 0.5100 K34 Gulla 0.4284
K35 布兰科3363 Blanco 3363 0.5586 K36 B.P.A.(BPA) 0.5219
K37 B557 0.3284 K38 N98-283 0.4591
K39 588 0.3837 K40 巴西017 Brazil 017 0.4606
K41 MS-66 0.3631 K42 巴西014 Brazil 014 0.2451
K43 82167 PC-11 0.4171 K44 鲁16188Bt Lu 16188Bt 0.4175
K45 冀省03H16 Ji Province 03H16 0.4659 K46 冀资64 Ji capital 64 0.2939
K47 苏远1028 Suyuan 1028 0.3204 K48 鲁5297 Lu 5297 0.4685
K49 鲁R1297 Lu R1297 0.3112 K50 库车130292 Kuqa 130292 0.3708
K51 剑河南哨棉1 Jian Henan Cotton 1 0.4423 K52 太平-陆3号 Taiping-Lu 3 0.3827
K53 江南-陆1号 Gangnam-Lu 1 0.3881 K54 富宁-陆 Funing-Lu 0.4214
K55 新县-陆 Xinxian-Lu 0.4218 K56 下冻-陆 Xiadong-Lu 0.4002
K57 榜圩-陆 Bangwei-Lu 0.3262 K58 三洞-陆1号 Sandong-Lu 1 0.4078
K59 70-29-5 0.5112 K60 台湾光复3号 Taiwanguangfu 3 0.4966
K61 大理75-8 Dali 75-8 0.5790 K62 东兰大花 Donglandahua 0.4133
K63 三江八江大花 Sanjiangbajiangdahua 0.2797 K64 三都大洋花 Sandudayanghua 0.4703
K65 富川湿坝大花 Fuchuanshibadahua 0.5858 K66 滇373 Dian 373 0.6832
K67 中棉所3号 Zhongmiansuo 3 0.5496 K68 中棉所4号 Zhongmiansuo 4 0.6615
K69 鄂荆92 Ejing 92 0.6058 K70 冀棉1号 Jimian 1 0.5917
K71 鄂棉14 Emian 14 0.4639 K72 中棉所24 Zhongmiansuo 24 0.5159
K73 鄂抗棉3号 Ekang Cotton 3 0.5425 K74 鄂抗棉9号 Ekang Cotton 9 0.3798
K75 浙905 Zhe 905 0.4663 K76 关农1号 Guannong 1 0.5836
K77 辽棉1号 Liaomian 1 0.6829 K78 一树红 Yishuhong 0.4336
K79 中棉所2号 Zhongmiansuo 2 0.4398 K80 宛棉3号 Wanmian 3 0.6329
K81 川113 Chuan 113 0.5218 K82 红狮7号 Red Lion 7 0.4931
K83 荆棉4号 Jingmian 4 0.5114 K84 南通5号 Nantong 5 0.4315
K85 南通11号 Nantong 11 0.5164 K86 波棉1号 Bomian 1 0.5329
K87 养马大桃 Yangmadatao 0.6560 K88 岱辽棉 Dailiaomian 0.5540
K89 澧4039 Li 4039 0.6116 K90 中3474 Zhong 3474 0.5633
K91 5245 0.5344 K92 湘1-170 Xian 1-170 0.6225
K93 中31 Zhong 31 0.5588 K94 鲁155 Lu 155 0.4870
K95 冀植36-3 Jizhi 36-3 0.3966 K96 徐州538 Xuzhou 538 0.4403
K97 华中101 Huazhong 101 0.5102 K98 苏棉7号 Sumian 7 0.4798
K99 新陆早9号 Xinluzao 9 0.3483 K100 豫棉15 Yumian 15 0.5272
K101 新陆早5号 Xinluzao 5 0.4762 K102 鄂棉4号 Emian 4 0.5689
K103 襄棉2号 Xiangmian 2 0.6151 K104 鸭棚棉 Yapengmian 0.4681
K105 369-10 0.4699 K106 383抗 383 Kang 0.3624
K107 反帝棉 Fandimian 0.5956 K108 冀棉8号 Jimian 8 0.4493
K109 鲁棉1号 Lumian 1 0.5649 K110 运安4号 Yunan 4 0.5368
K111 莘547 Sheng 547 0.5936 K112 岱红岱 Daihongdai 0.4750
K113 洞庭3号 Dongting 3 0.4704 K114 枣阳不落蕾 Zaoyangbuluolei 0.5452
K115 沪棉204 Humian 204 0.4842 K116 慈棉9号 Cimian 9 0.5236
K117 彭泽4号 Pengze 4 0.4167 K118 邵阳大桃Shaoyangdatao 0.4239
K119 延64-1 Yan 64-1 0.4832 K120 中521 Zhong 521 0.4322
K121 咸棉858 Xianmian858 0.4497 K122 鄂沙28 Esha 28 0.4776
K123 徐州514 Xuzhou 514 0.4676 K124 徐州142 Xuzhou 142 0.5579
K125 泗棉2号 Simian 2 0.5295 K126 肖县133 Xiaoxian 133 0.4165
K127 保6716 Bao 6716 0.4614 K128 中棉所12号 Zhongmiansuo 12 0.5108
K129 无极一枝花 Wujiyizhihua 0.7868 K130 中棉所19号 Zhongmiansuo 19 0.5937
K131 临清201 Linqing 201 0.5722 K132 宛早686 Wanzao 686 0.5972
K133 宛231 Wan 231 0.5870 K134 中棉所23号 Zhongmiansuo 23 0.6140
K135 南丹巴地大花 Nandanbadidahua 0.6002 K136 八农212 Banong 212 0.6022
K137 中植BD13 Zhongzhi BD13 0.6093 K138 临清2350 Linqing 2350 0.6356
K139 华中106 Huazhong 106 0.6060 K140 中棉所10号 Zhongmiansuo 10 0.6103
K141 黑山棉1号 Heishan Cotton 1 0.7634 K142 锦棉2号 Jinmian 2 0.4919
K143 Chirpan996 0.6121 K144 辽棉9号 Liaomian 9 0.6027
K145 中棉所16号 Zhongmiansuo 16 0.5518 K146 冀91-28 Ji 91-28 0.5590
K147 陕2754 Shan 2754 0.6347 K148 陕2812 Shan 2812 0.5312
K149 达棉20号 Damian 20 0.4989 K150 豫早275 Yuzao 275 0.6467
K151 运93 Yu 93 0.6033 K152 运94H-32 Yun 94H-32 0.4144
K153 辽锦棉3号 Liaojinmian 3 0.5516 K154 库车T94-4 Kuche T94-4 0.6245
K155 豫棉19 Yumian 19 0.5028 K156 邯284 Han 284 0.4840
K157 双价321 Shuangjia 321 0.5167 K158 新陆早10号 Xinluzao 10 0.3410
K159 莎陆1号 Shalu 1 0.6752 K160 秦荔514 Qinli 514 0.7509
K161 宁棉18号 Ningmian 18 0.6863 K162 桂罗成大棉 Guiluochengdamian 0.5246
K163 新陆中5号 Xinluzhong 5 0.5325 K164 苏抗310 Sukang 310 0.4422
K165 豫棉18 Yumian 18 0.5386 K166 国欣棉3号 Guoxinmian 3 0.4164
K167 晋棉38 Jinmian 38 0.3632 K168 中植86-6 Zhongzhi 86-6 0.4457
K169 简阳303 Jianyang 303 0.4184 K170 宁棉9号 Ningmian 9 0.4794
K171 新陆早36 Xinluzao 36 0.4785 K172 博乐34号 Bole 34 0.3859
K173 陕4080 Shan 4080 0.4066 K174 赣棉12号 Ganmian 12 0.4184
K175 中遗红2 Zhongyihong 2 0.6066 K176 苏远04-3 Suyuan 04-3 0.4113
K177 苏远04-129 Suyuan 04-129 0.6278 K178 J02508 0.4413
K179 辽4853 Liao 4853 0.4149 K180 太原4号 Taiyuan 4 0.4697
K181 中棉所49 Zhongmiansuo 49 0.4711 K182 河南79号 Henan 79 0.4745
K183 酒棉2号 Jiumian 2 0.6401 K184 晋棉36 Jinmian 36 0.4403
K185 中2201 Zhong 2201 0.5059 K186 晋7 Jin 7 0.6516
K187 陕954 Shan 954 0.6572 K188 仁洞67-86 Rendong 67-86 0.5099
K189 江苏棉1号 Jiangsumian 1 0.5421 K190 陕三原78-782 Shansanyuan 78-782 0.5333
K191 平塘老洋花 Pingtanglaoyanghua 0.5186 K192 北褚公社棉 Beizhugongshemian 0.5385
K193 抗5 Kang 5 0.4908 K194 赣早032 Ganzao 032 0.5199
K195 中6331 Zhong 6331 0.4430 K196 军棉1号 Junmian 1 0.6032
K197 上海368 Shanghai 368 0.4923 K198 麻阳棉花 Mayangmianhua 0.5244
K199 巴马那大棉 Bamanadamian 0.6223 K200 南丹里湖大棉 Nandanlihutaimian 0.4604
K201 华中远91 Huazhongyuan 91 0.5525 K202 鄂E901 E E901 0.6351
K203 川3593 Chuan 3593 0.4468 K204 鄂4396 E 4396 0.6248
K205 吐83-161Tu 83-161 0.4771 K206 中沪植3910 Zhonghuzhi 3910 0.6396
K207 孝2168 Xiao 2168 0.4600 K208 中棉所30 Zhongmiansuo 30 0.6040
K209 石河子913 Shihezi 913 0.5657 K210 新研96-48 Xinyan 96-48 0.6451
K211 科遗7号 Keyi 7 0.6158 K212 新陆中8号 Xinluzhong 8 0.6384
K213 洞庭1号 Dongting 1 0.5599 K214 荆55173 Jin 55173 0.3984
K215 鲁原343 Luyuan 343 0.6501 K216 中棉所50 Zhongmiansuo 50 0.5313
K217 新陆早31 Xinluzao 31 0.4989 K218 中远0114 Zhongyuan 0114 0.4911
K219 运1812 Yun 1812 0.6322 K220 徐州6号 Xuzhou 6 0.6013
K221 新陆早7号 Xinluzao 7 0.4663 K222 一把鞭 Yibabian 0.6874
K223 鲁棉2号 Lumian 2 0.5228 K224 中棉所17号Zhongminasuo 17 0.5572
K225 鲁1138 Lu 1138 0.5776 K226 中植86-1 Zhongzhi 86-1 0.6566
K227 鄂抗棉8号 Ekangmian 8 0.5268 K228 鲁棉6号 Lumian 6 0.6196
K229 中棉所35 Zhongmiansuo 35 0.5277 K230 新棉33B Xinmian 33B 0.4860
K233 中棉所41 Zhongmiansuo 41 0.5782 K234 泗168 Si 168 0.5821
K235 乍得3号 Zhade 3 0.5773 K236 农光一号 Nongguang 1 0.5752
K237 土库曼棉 Turkmen cotton 0.5391 K238 酒棉8号 Jiumian 8 0.4319
K239 晋棉46 Jinmian 46 0.4513 K240 苏联棉78 Soviet Cotton 78 0.7406
K241 MAR-7A-3 0.5054 K242 快车棉Express Cotton 0.5880
K243 King 0.6074 K244 保 2367 Bao 2367 0.5730
K245 晋棉49 Jinmian 49 0.5684 K246 非洲棉E-40 African Cotton E-40 0.4798
K247 GP203 0.6496 K248 德州973 Dezhou 973 0.6010
K249 澳V2/757 Ao V2/757 0.5602 K250 F281 0.4877
K251 绿絮1号 Lvxu 1 0.5827 K252 中棉所60 Zhongmiansuo 60 0.5040
K253 Miscot7803-52 0.5338 K254 冀丰908 Jinfeng 908 0.4355
K255 鲁棉研28号 Lumianyan 28 0.4047 K256 GP135 0.4121
K257 鄂0908 E 0908 0.3694 K258 阿肯色971 Arkansas 971 0.3140
K259 棕絮1号 Brown floc No.1 0.6297 K260 晋棉34 Jinmian 34 0.4375
K261 岱字棉16号 Daizimian 16 0.4342 K262 澳SiV2 Ao SiV2 0.3649
K263 Delcot277-5 0.4863 K264 棕2-63 Brown 2-63 0.4208
K265 司-6524 Si-6524 0.6384 K266 GZNn 0.4290
K267 AC321 0.4123 K268 V1 0.4013
K269 超鸡脚德字棉 Chaojijiaodezimian 0.4699 K270 湘棉18 Xianmian 18 0.3520
K271 PD2165 0.3616 K272 石抗39 Shikang 39 0.2740
K273 银棉1号 Yinmian 1 0.4012 K274 苏优6036 Suyou 6036 0.4741
K275 农大棉7号 Nongdamian 7 0.4179 K276 博乐07-11 Bole 07-11 0.3092
K277 中棉所81 Zhongmiansuo 81 0.4427 K278 DES926 0.5104
K279 N74-250 0.6399 K280 M-8124-1159 0.5058
K281 中RI015 Zhong RI015 0.4009 K282 PD6186 0.3772
K283 HF5RUP 0.3547 K284 С3210 0.5764
K285 哥伦比亚 Columbia 0.5890 K286 德字棉2404 Dezimian 2404 0.5115
K287 Pilose-3 0.6391 K288 Qik 0.4395
K289 辽无1201 Liaowu 1201 0.5835 K290 布哈拉6号 Bukhara 6 0.5289
K291 Z37less 0.6031 K292 PD97072 0.4670
K293 Delfos9169A 0.6159 K294 Desmotada 0.4913
K295 晋农大远3-1 Jinnongdayuan 3-1 0.6622 K296 美87-2 America 87-2 0.5312
K297 L-5F45 0.5218 K298 安集延-60 Andijan-60 0.6235
K299 DP90 0.3844 K300 密斯柯特8711ne Miscot 8711ne 0.4122
K301 EmpireStrN2-4 0.3826 K302 V83-013 0.4230
K303 Cestam86-1 0.3200 K304 PD0113 0.4465
K305 苏联棉118 Soviet Cotton 118 0.4309 K306 中植棉2号 Zhongzhimian 2 0.5696
K307 Rowden 0.5534 K308 费尔干175 Fergan 175 0.4188
K309 中无372 Zhongwu 372 0.3940 K310 新陆中35号 Xinluzhong 35 0.4174
K311 农林1号 Nonglin 1 0.4602 K312 宁523 Ning 523 0.4753
K313 Local Cotton 0.5406 K314 苏联棉12 Soviet Cotton 12 0.4999
K315 辽 315 Liao 315 0.6059 K316 蔡科510 Caike 510 0.6100
K317 澧771-436 Li 771-436 0.5762 K318 邓恩HS120 Dunn HS120 0.6556
K319 苏联8909 Soviet Union 8909 0.6195 K320 百棉1号 Baimian 1 0.4860
K321 岱字棉15号 Daizimian 15 0.4868 K322 LambrightGL-N 0.4839
K323 108F 0.5040 K324 斯字棉453 Sizimian 453 0.4907
K325 gL2gl3 0.5307 K326 紫褐陆地棉 Purple brown cotton 0.6729
K327 FH682 0.3825 K328 N73DeltapineNGF 0.4495
K329 中21371 Zhong 21371 0.3552 K330 冀169 Ji 169 0.3381
K331 Ari1327 0.3865 K332 Ari971 0.3767
K333 A41772BBt 0.3856 K334 SGK9708 0.3906
K335 大铃棉69号 Dalingmian 69 0.3422 K336 辽阳多毛 Liaoyangduomao 0.5137
K337 R01三都85 Ro1 Sandu 85 0.6495 K338 中R773-310 Zhong R773-310 0.6169
K339 中R773-314 Zhong R773-314 0.4517 K340 中1138E24 Zhong 1138E24 0.4322
K341 中棉所43 Zhongmiansuo 43 0.4720 K342 望江棉 Wangjiangmian 0.4751
K343 原247-31 Yuan 247-31 0.4608 K344 Ari3696 0.4431
K345 苏优6003 Suyou 6003 0.5409 K346 A971Bt 0.3809
K347 RT白絮 RT Baixu 0.5048 K348 苏远7235 Suyuan 7235 0.4805
K349 五三长绒 Wusanchangrong 0.4894 K350 RTN78 0.5124
K351 Ari3697 0.4057 K352 中1421 Zhong 1421 0.3805
K353 4133Bt 0.3604 K354 中1441 Zhong 1441 0.4995
K355 棕1-61 Brown 1-61 0.7686 K356 棕128 Brown 128 0.5048
K357 中棉所82 Zhongmiansuo 82 0.5023 K358 棕S9B11 Brown S9B11 0.4746
K359 棕S9B12 Brown S9B12 0.6428 K360 冀棉668 Jimian668 0.4990
K361 新陆早3号 Xinluzao 3 0.5002 K362 廊黄F10 Langhuang F10 0.3950
K363 苏棉12 Sumian 12 0.4421 K364 乌干达3号 Uganda 3 0.4948
K365 常抗棉 Changkangmian 0.5303 K366 86-1 0.6029
K367 徐州553 Xuzhou 553 0.5215 K368 冀棉11号 Jimian 11 0.5366
K369 TM-1 0.5425 K370 芽黄Yahuang 0.5128
K371 渝棉1号 Yumian 1 0.4522 K372 372 0.3841
K373 冀棉20 Jimian20 0.4594 K374 J02-247 0.4875
K375 邯郸333 Handan 333 0.5388 K376 中棉所36 Zhongmiansuo 36 0.4700
K377 晋棉20号 Jinmian 20 0.5201 K378 苏棉9号 Sumian 9 0.4936
K379 银山6号 Yinshan 6 0.4300 K380 鲁棉研16号 Lumianyan 16 0.4153
K381 晋棉25号 Jinmian 25 0.5181 K382 鄂抗棉10号 Ekangmian 10 0.4826
K383 中078 Zhong 078 0.4970 K384 冀棉17号 Jimian 17 0.5467

图1

子叶与下胚轴夹角的测定"

图2

子叶缺钾斑面积测定"

表1

棉花子叶期耐低钾能力评价指标的基因型变异分析"

评价指标
Evaluation index
最小值
Min.
最大值
Max.
中位数
Median
平均值
Mean
标准差
SD
变异系数
CV (%)
缺钾斑相对面积
Proportion of potassium deficiency spots on cotyledon (%)
0.000 82.845 12.660 17.733 16.777 96.24
子叶与下胚轴夹角
Angle between cotyledon and hypocotyl (°)
4.621 74.971 40.062 40.173 12.662 31.52
根系总长度 Total root length (cm) 56.112 350.573 173.060 175.455 45.188 25.75
根系总表面积 Total root surface area (cm2) 10.796 54.962 29.670 30.371 6.373 20.98
平均根直径Average root diameter (mm) 0.280 0.809 0.549 0.559 0.093 16.64
根系总体积 Total root volume (cm3) 0.162 1.012 0.408 0.428 0.119 27.80
植株干重 Plant dry weight (g) 0.316 0.848 0.543 0.543 0.080 14.73
K+浓度 Potassium content (mg g-1) 3.000 10.431 6.683 6.608 1.039 15.72
K+积累量 Potassium accumulation (mg plant-1) 0.394 1.472 0.886 0.892 0.172 19.28

图3

棉花子叶期耐低钾能力各评价指标的频次分布 A: 缺钾斑相对面积(%); B: 子叶与下胚轴夹角(°); C: 根系总长度(cm); D: 根系总表面积(cm2); E: 平均根直径(mm); F: 根系总体积(cm3); G: 植株干重(g); H: K+浓度(mg g-1); I: K+积累量(mg plant-1)。供试种质材料384份。"

表2

棉花子叶期耐低钾能力各评价指标相关性分析"

指标Index PPDSC ACH TRL TRSA ARD TRV PDW PC PA
PPDSC 1
ACH -0.56** 1
TRL 0.23** -0.04 1
TRSA 0.17* -0.09 0.76** 1
ARD -0.21** 0.02 -0.60** 0 1
TRV 0.07 -0.09 0.26** 0.78** 0.51** 1
PDW -0.11 0.10 0.24** 0.26** -0.02 0.16* 1
PC -0.17* 0.06 0.15* 0.20** 0.00 0.19** -0.29** 1
PA -0.16* 0.08 0.37** 0.41** -0.03 0.30** 0.59** 0.59** 1

表3

棉花子叶期耐低钾能力评价指标之间重要性比较"

指标Index PPDSC ACH TRL TRSA TRV PDW PC
PPDSC 1 2 1 1 1 1/3 1/2
ACH 1/2 1 1/2 1/2 1/2 1/6 1/4
TRL 1 2 1 1 1 1/3 1/2
TRSA 1 2 1 1 1 1/3 1/2
TRV 1 2 1 1 1 1/3 1/2
PDW 3 6 3 3 3 1 2
PC 2 4 2 2 2 1 1

表4

棉花子叶期耐低钾能力评价指标权重向量计算及检验"

指标Index Mi $M$ Wi AWi
PPDSC 0.333 0.8546 0.1026 0.7286
ACH 0.003 0.4275 0.0513 0.3645
TRL 0.333 0.8546 0.1026 0.7286
TRSA 0.333 0.8546 0.1026 0.7286
TRV 0.333 0.8546 0.1026 0.7286
PDW 972.000 2.6718 0.3208 2.2949
PC 64.000 1.8114 0.2175 1.5644
λmax 7.1220
CR 0.0154

图4

供试棉花种质材料子叶期综合耐低钾能力的频次分布"

图5

种质材料耐低钾能力的聚类分析"

表6

部分供试种质材料的种仁和种壳K+浓度"

种质材料
Germplasm
K+浓度Potassium content (mg g-1) 综合评价值C
Comprehensive evaluation value C
种仁 Kernel 种壳 Hull
K159 15.4 10.7 0.67524
K222 14.6 10.7 0.68742
K133 13.5 9.7 0.58696
K338 14.6 9.4 0.61690
K143 14.5 9.75 0.61214
K229 15.1 12.3 0.52767
P > F 0.0724 0.275
[1] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670-681.
doi: 10.1111/j.1399-3054.2008.01073.x pmid: 18331406
[2] Jin S H, Huang J Q, Li X Q, Zheng B S, Wu J S, Wang Z J, Liu G H, Chen M. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol, 2011, 10: 1142-1151.
[3] Wang M, Zheng Q S, Shen Q, Guo S W. The critical role of potassium in plant stress response. Int J Mol Sci, 2013, 14: 7370-7390.
doi: 10.3390/ijms14047370 pmid: 23549270
[4] Battie-Laclau P, Laclau J P, Beri C, Mietton L, Muniz M, Arenque B C, Marisa D, Jordan-Meille L, Bouillet J P, Nouvellon Y. Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ, 2013, 37: 70-81.
doi: 10.1111/pce.2014.37.issue-1
[5] Erel R, Yermiyahu U, Ben-Gal A, Dag A, Shapira O, Schwartz A. Modification of non-stomatal limitation and photoprotection due to K and Na nutrition of olive trees. J Plant Physiol, 2015, 177: 1-10.
[6] Marschner P. Mineral Nutrition of Higher Plants. London: Academic Press, 2012. pp 258-296.
[7] Blevins D G. Role of protein in protein metabolism in plants. In: Munson R D, eds. Potassium in Agriculture. Madison: American Society of Agronomy, 1985. pp 413-424.
[8] Leigh R A, Jones R G W. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol, 1984, 97: 1-13.
doi: 10.1111/nph.1984.97.issue-1
[9] Tisdale S L, Nelson W L, Beaton J D. Soil Fertility and Fertilizers. London: Collier Macmillan Publishers, 1985. pp 69-85.
[10] 郑娜, 翟伟卜, 张珊珊, 张文蔚, 简桂良, 韩榕, 齐放军. 棉花成熟与衰老的影响因素及其调控策略. 植物生理学报, 2014, 50: 1310-1314.
Zheng N, Zhai W B, Zhang S S, Zhang W W, Jian J L, Han R, Qi F J. Factors affecting cotton maturation and senescence processes and the corresponding regulative strategies. Acta Phytophysiol Sin, 2014, 50: 1310-1314. (in Chinese with English abstract)
[11] 王刚卫, 田晓莉, 谢湘毅, 李博, 段留生, 王保民, 何钟佩, 李召虎. 土壤缺钾对棉花钾运转和分配的影响. 棉花学报, 2007, 19: 173-178.
Wang G W, Tian X L, Xie X Y, Li B, Duan L S, Wang B M, He Z P, Li Z H. Effects of potassium deficiency on the transport and partitioning of potassium in cotton plant. Cotton Sci, 2007, 19: 173-178. (in Chinese with English abstract)
[12] Brouder S M, Cassman K G. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a Vermiculitic soil. Field Crops Res, 1990, 23: 187-203.
doi: 10.1016/0378-4290(90)90054-F
[13] 李书田, 邢素丽, 张炎, 崔荣宗. 钾肥用量和施用时期对棉花产量品质和棉田钾素平衡的影响. 植物营养与肥料学报, 2016, 22: 111-121.
Li S T, Xing S L, Zhang Y, Cui R Z. Application rate and time of potash for high cotton yield, quality and balance of soil potassium. J Plant Nutr Fert, 2016, 22: 111-121. (in Chinese with English abstract)
[14] 肖水平, 吴香华, 孙亮庆, 刘新稳, 曾小林, 杨绍群, 柯兴盛. 棉花苗期钾营养效率的基因型分类及钾营养特性差异分析. 棉花学报, 2014, 26: 546-554.
Xiao S P, Wu X H, Sun L Q, Liu X W, Zeng X L, Yang S Q, Ke X S. Classification and analysis of potassium nutrition efficiency and characteristics in different cotton genotypes at seedling stage. Cotton Sci, 2014, 26: 546-554. (in Chinese with English abstract)
[15] 田晓莉, 王刚卫, 朱睿, 杨培珠, 段留生, 李召虎. 棉花耐低钾基因型筛选条件和指标的研究. 作物学报, 2008, 34: 1435-1443.
Tian X L, Wang G W, Zhu R, Yang P Z, Duan L S, Li Z H. Conditions and indicators for screening cotton (Gossypium hirsutum) genotypes tolerant to low-potassium. Acta Agron Sin, 2008, 34: 1435-1443. (in Chinese with English abstract)
[16] 肖水平, 孙亮庆, 刘文成, 杨磊, 柯兴盛. 浅述作物耐低营养材料的筛选方法及应用. 棉花科学, 2014, 36(4): 3-8.
Xiao S P, Sun L Q, Liu W C, Yang L, Ke X S. Review of the screening methods and its application on crops tolerance to low nutrition materials. Cotton Sci, 2014, 36(4): 3-8. (in Chinese with English abstract)
[17] 杜培兵, 张永福, 白小东, 范向斌, 杨春, 齐海英, 王兴涛, 毛向红, 朱智慧. 主成分分析和隶属函数法对马铃薯品种抗旱性的评价. 种子, 2019, 38(8): 120-126.
Du P B, Zhang Y F, Bai X D, Fan X B, Yang C, Qi H Y, Wang X T, Mao X H, Zhu Z H. Evaluation of drought resistance of potato varieties by principal component analysis and membership function method. Seed, 2019, 38(8): 120-126. (in Chinese with English abstract)
[18] 朱丽, 姬振蒙, 任荣荣, 殷敏, 顾闽峰, 晏军, 费月跃. 基于隶属函数法的江苏沿海地区羊角椒种子萌发期耐盐碱性综合评价. 蔬菜, 2022, 35(10): 17-23.
Zhu L, Ji Z M, Ren R R, Yin M, Gu M F, Yan J, Fei Y Y. Comprehensive evaluation of saline-alkali tolerance on seeds of sheep-horn pepper in Jiangsu coastal area based on membership function method. Vegetables, 2022, 35(10): 17-23. (in Chinese with English abstract)
[19] 韩永亮, 李世云, 路正营, 孙璐, 杨玉枫, 尹国, 李平, 崔红印, 常金华. 62份陆地棉种质资源苗期抗旱性综合评价及耐旱种质筛选. 干旱地区农业研究, 2021, 39(6): 28-38.
Han Y L, Li S Y, Lu Z Y, Sun L, Yang Y F, Yin G, Li P, Cui H Y, Chang J H. Comprehensive identification and selection of drought resistance of 62 cotton varieties (lines) at cotton seedling stage. Agric Res Arid Area, 2021, 39(6): 28-38. (in Chinese with English abstract)
[20] 杨佳蒴, 赵文青, 胡伟, 王友华, 陈兵林, 周治国. 棉花苗期耐低钾能力筛选指标研究及其与产量、品质的关系. 棉花学报, 2014, 26: 301-309.
Yang J S, Zhao W Q, Hu W, Wang Y H, Chen B L, Zhou Z G. Indicators of cotton (Gossypium hirsutum L.) cultivar screening for low-potassium tolerance in seedling stage and its relationship with yield and quality. Cotton Sci, 2014, 26: 301-309. (in Chinese with English abstract)
[21] 姜存仓, 陈防, 高祥照, 鲁剑巍, 万开元, 年夫照, 王运华. 低钾胁迫下两个不同钾效率棉花基因型的生长及营养特性研究. 中国农业科学. 2008, 26: 488-493.
Jiang C C, Chen F, Gao X Z, Lu J W, Wan K Y, Nian F Z, Wang Y H. Different responses to potassium stress between potassium high efficiency and potassium low efficiency cotton genotypes. Sci Agric Sin, 2008, 26: 488-493. (in Chinese with English abstract)
[22] 田晓莉, 王刚卫, 杨富强, 杨培珠, 段留生, 李召虎. 棉花不同类型品种耐低钾能力的差异. 作物学报, 2008, 34: 1770-1780.
doi: 10.3724/SP.J.1006.2008.01770
Tian X L, Wang G W, Yang F Q, Yang P Z, Duan L S, Li Z H. Differences in tolerance to low-potassium supply among different types of cultivars in cotton (Gossypium hirsutum L.). Acta Agron Sin, 2008, 34: 1770-1780. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01770
[23] 姜存仓, 郝艳淑, 王晓丽, 夏颖, 王运华. 钾对不同钾效率棉花基因型叶片解剖结构的影响. 植物营养与肥料学报, 2011, 17: 1538-1544.
Jiang C C, Hao Y S, Wang X L, Xia Y, Wang Y H. Effects of potassium fertilization on leaf anatomical structures of different cotton genotypes. J Plant Nutr Fert, 2011, 17: 1538-1544. (in Chinese with English abstract)
[24] 王晓茹, 董合林, 李永旗, 李鹏程, 刘敬然, 刘爱忠, 孙淼, 赵新华, 李亚兵, 张思平. 棉花不同品种钾吸收效率差异的根系形态学和生理学机理. 棉花学报, 2016, 28: 152-159.
Wang X R, Dong H L, Li Y Q, Li P C, Liu J R, Liu A Z, Sun M, Zhao X H, Li Y B, Zhang S P. Mechanisms underlying the effects of morphological and physiological characteristics of cotton varieties on differential potassium uptake efficiencies. Cotton Sci, 2016, 28: 152-159. (in Chinese with English abstract)
[25] 展曼曼, 王宁, 田晓莉. 棉花钾营养效率的基因型差异研究进展. 棉花学报, 2012, 24: 176-182.
Zhan M M, Wang N, Tian X L. Review of genotypic differences and underlying mechanisms in potassium efficiency of cotton (Gossypium hirsutum). Cotton Sci, 2012, 24: 176-182. (in Chinese with English abstract)
[26] 俞立平, 郑昆. 期刊评价中不同客观赋权法权重比较及其思考. 现代情报, 2021, 41(12): 121-130.
doi: 10.3969/j.issn.1008-0821.2021.12.012
Yu L P, Zheng K. Comparison and consideration of different objective weighting methods in journal evaluation. J Mod Inf, 2021, 41(12): 121-130. (in Chinese with English abstract)
[27] Glenda V, Mike R. Relationships between seed mass, seed nutrients, and seedling growth in Banksia cunninghamii (Proteaceae). Int J Plant Sci, 2001, 162: 599-606.
doi: 10.1086/320133
[28] Milberg P, Lamont B B. Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytol, 1997, 137: 665-672.
doi: 10.1046/j.1469-8137.1997.00870.x
[29] Hanley M E, Cordier P K, May O, Kelly C K. Seed size and seedling growth: differential response of Australian and British Fabaceae to nutrient limitation. New Phytol, 2007, 174: 381-388.
doi: 10.1111/j.1469-8137.2007.02003.x pmid: 17388900
[30] Naegle E R, Burton J W, Carter T E, Rufty T W. Influence of seed nitrogen content on seedling growth and recovery from nitrogen stress. Plant Soil, 2005, 271: 329-340.
doi: 10.1007/s11104-004-3242-4
[31] 冯波, 刘延忠, 高荣歧, 陈秋玲, 董树亭. 不同子粒大小玉米种苗转化过程中生理特性研究. 华北农学报, 2006, 21(4): 35-38.
doi: 10.3321/j.issn:1000-7091.2006.04.009
Feng B, Liu Y Z, Gao R Q, Chen Q L, Dong S T. Study on physical characteristic of different size seed during maize seed-seedling transformation. Acta Agric Boreali-Sin, 2006, 21(4): 35-38. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-7091.2006.04.009
[32] Muhammad N, Alain M, Christian M, Alain V, Loïc P, Sylvain P. Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant Soil, 2011, 346: 231-244.
doi: 10.1007/s11104-011-0814-y
[33] Yan X L, Beebe S E, Lynch J P. Genetic variation for phosphorus efficiency of common bean in contrasting soil types: ii. Yield response. Crop Sci, 1995, 35: 1094-1099.
doi: 10.2135/cropsci1995.0011183X003500040029x
[34] 刘国栋, 刘更令. 水稻种子含钾量的基因型差异. 中国水稻科学, 1997, 11: 179-182.
Liu G D, Liu G L. Genotypic differences in potassium contents of rice seeds. Chin J Rice Sci, 1997, 11: 179-182. (in Chinese with English abstract)
[1] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[2] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[3] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[4] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[5] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响[J]. 作物学报, 2024, 50(2): 425-439.
[6] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[7] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[8] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[9] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[10] 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218.
[11] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[12] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[13] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[14] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[15] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .