作物学报 ›› 2024, Vol. 50 ›› Issue (3): 734-746.doi: 10.3724/SP.J.1006.2024.32021
韦还和1(), 张翔1, 朱旺2, 耿孝宇1, 马唯一1, 左博源1, 孟天瑶2, 高平磊1, 陈英龙1, 许轲1, 戴其根1,*()
WEI Huan-He1(), ZHANG Xiang1, ZHU Wang2, GENG Xiao-Yu1, MA Wei-Yi1, ZUO Bo-Yuan1, MENG Tian-Yao2, GAO Ping-Lei1, CHEN Ying-Long1, XU Ke1, DAI Qi-Gen1,*()
摘要:
以江苏沿海滩涂主栽常规粳稻南粳9108和淮稻5号为试材, 研究不同盐胁迫处理包括对照(CK, 盐浓度0)、中盐(medium-salinity stress, MS, 盐浓度0.15%)和高盐(high-salinity stress, HS, 盐浓度0.3%)对水稻籽粒灌浆及产量形成生理特性的影响。结果表明: (1) 与对照相比, 中盐和高盐胁迫均显著降低水稻产量, 降幅分别为26.3%和57.7% (两品种平均); 盐胁迫处理下, 穗数、每穗粒数、结实率和千粒重均显著下降。(2) 盐胁迫显著降低穗长、每穗强势粒和弱势粒籽粒数、结实率和千粒重, 其中强势粒结实率和千粒重的降幅均低于弱势粒。(3) 盐胁迫下, 水稻植株抽穗期和成熟期干物重以及抽穗期至成熟期干物质积累量显著下降, 但收获指数明显增加。此外, 抽穗后15 d和30 d盐胁迫处理的叶片净光合速率和SPAD值均显著低于对照。(4) 盐胁迫降低籽粒最大灌浆速率和平均灌浆速率, 但达最大灌浆速率时间和有效灌浆天数有所增加; 盐胁迫提高了强势粒和弱势粒有效灌浆天数, 但平均灌浆速率显著下降, 其中强势粒灌浆量的降幅低于弱势粒。(5) 盐胁迫下, 籽粒腺苷二磷酸焦磷酸化酶(AGPase)、淀粉合成酶(SSS)、颗粒型淀粉合成酶(GBSS)和淀粉分支酶(SBE)活性显著下降, 其中弱势粒的降幅高于强势粒。综上所述, 盐胁迫下水稻强势粒和弱势粒灌浆天数有所增加, 但籽粒灌浆速率及其淀粉合成关键酶活性显著下降, 致使籽粒充实度、粒重和产量显著下降, 其中盐胁迫对弱势粒抑制作用大于强势粒。
[1] |
Yuan L P. Development of hybrid rice to ensure food security. Rice Sci, 2014, 21: 1-2.
doi: 10.1016/S1672-6308(13)60167-5 |
[2] |
Zhang J Z, He C X, Chen L, Cao S X. Improving food security in China by taking advantage of marginal and degraded lands. J Clean Prod, 2018, 171: 1020-1030.
doi: 10.1016/j.jclepro.2017.10.110 |
[3] |
Wang J Y, Zhang Z W, Liu Y S. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy, 2018, 74: 204-213.
doi: 10.1016/j.landusepol.2017.11.037 |
[4] |
Radanielson A M, Gaydon D S, Khan M M R, Chaki A K, Rahman M A, Angeles O, Li T, Ismail A. Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crops Res, 2018, 229: 27-36.
doi: 10.1016/j.fcr.2018.08.020 |
[5] |
韦还和, 葛佳琳, 张徐彬, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系. 作物学报, 2020, 46: 1238-1247.
doi: 10.3724/SP.J.1006.2020.02001 |
Wei H H, Ge J L, Zhang X B, Meng T Y, Lu Y, Li X Y, Tao Y, Ding E H, Chen Y L, Dai Q G. Tillering characteristics and its relationships with population productivity of japonica rice Nanjing 9108 under salinity stress. Acta Agron Sin, 2020, 46: 1238-1247 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.02001 |
|
[6] |
王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的相应及耐盐机理研究进展. 中国水稻科学, 2022, 36: 105-117.
doi: 10.16819/j.1001-7216.2022.210609 |
Wang Y, Zhang R, Liu Y H, Li R K, Ge J F, Deng S W, Zhang X B, Chen Y L, Wei H H, Dai Q G. Rice response to salt stress and research progress in salt tolerance mechanism. Chin J Rice Sci, 2022, 36: 105-117 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.210609 |
|
[7] |
Zheng C, Liu C T, Liu L, Tan Y N, Sheng X B, Yu D, Sun Z Z, Sun X W, Chen J, Yuan D Y, Duan M J. Effect of salinity stress on rice yield and grain quality: a meta-analysis. Eur J Agron, 2023, 144: 126765.
doi: 10.1016/j.eja.2023.126765 |
[8] |
付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032 |
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032 |
|
[9] |
徐云姬, 唐树鹏, 简超群, 蔡文璐, 张伟杨, 王志琴, 杨建昌. 多胺与乙烯对水稻籽粒灌浆、粒重和品质的调控作用. 中国水稻科学, 2022, 36: 327-335.
doi: 10.16819/j.1001-7216.2022.211010 |
Xu Y J, Tang S P, Jian C Q, Cai W L, Zhang W Y, Wang Z Q, Yang J C. Roles of polyamines and ethylene in grain filling, grain weight and quality of rice. Chin J Rice Sci, 2022, 36: 327-335 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.211010 |
|
[10] |
Huang J W, Pan Y P, Chen H F, Zhang Z X, Fang C X, Shao C H, Amjad H, Lin W W, Lin W X. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Res, 2020, 258: 107962.
doi: 10.1016/j.fcr.2020.107962 |
[11] | 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-193. |
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193 (in Chinese with English abstract). | |
[12] |
Lawas L M F, Shi W J, Yoshimoto M, Hasegawa T, Hincha D K, Zuther E, Jagadish S V K. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Res, 2018, 229: 66-77.
doi: 10.1016/j.fcr.2018.09.009 |
[13] | 左静红. 苏打盐碱胁迫对北方粳稻灌浆特性及穗部性状的影响. 中国科学院大学硕士学位论文, 北京, 2013. |
Zuo J H. Effects of Saline-alkaline Stress on the Grain Filling Characteristics and Panicle Traits of Northern Japonica. MS Thesis of Chinese Academy Sciences, Beijing, China, 2013 (in Chinese with English abstract). | |
[14] | 朱宽宇, 展鹏飞, 陈静, 王志琴, 杨建昌, 赵步洪. 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响. 中国水稻科学, 2018, 32: 155-168. |
Zhu K Y, Zhan P F, Chen J, Wang Z Q, Yang J C, Zhao B H. Effects of irrigation regimes during grain filling under different nitrogen rates on inferior spikelets grain-filling and grain yield of rice. Chin J Rice Sci, 2018, 32: 155-168 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2018.7060 |
|
[15] |
Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ Exp Bot, 2016, 132: 28-41.
doi: 10.1016/j.envexpbot.2016.08.006 |
[16] | 程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报, 2001, 27: 201-206. |
Cheng F M, Jiang D A, Wu P, Shi C H. Changes and temperature effects of starch synthase during grain filling in early indica rice. Acta Agron Sin, 2001, 27: 201-206 (in Chinese with English abstract). | |
[17] | 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究. 作物学报, 1997, 23: 338-344. |
Li T G, Shen B, Chen N, Luo Y K. Study on the role of Q enzyme in the formation of chalky rice grains. Acta Agron Sin, 1997, 23: 338-344 (in Chinese with English abstract). | |
[18] |
Meng T Y, Zhang X B, Ge J L, Chen X, Yang Y L, Zhu G L, Chen Y L, Zhou G S, Wei H H, Dai Q G. Agronomic and physiological traits facilitating better yield performance of japonica/indica hybrids in saline fields. Field Crops Res, 2021, 271: 108255.
doi: 10.1016/j.fcr.2021.108255 |
[19] |
Khan I, Muhammad A, Chattha M U, Skalicky M, Chattha M B, Ayub M A, Anwar M R, Soufan W, Hassan M U, Rahman M A, Brestic M, Zivcak M, Sabagh A E. Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application. Front Plant Sci, 2022, 13: 840900.
doi: 10.3389/fpls.2022.840900 |
[20] | 周根友, 翟彩娇, 邓先亮, 张姣, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响. 中国水稻科学, 2018, 32: 146-154. |
Zhou G Y, Zhai C J, Deng X L, Zhang J, Zhang Z L, Dai Q G, Cui S Y. Performance of yield, photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro-plots. Chin J Rice Sci, 2018, 32: 146-154 (in Chinese with English abstract). | |
[21] |
Chen T X, Shabala S, Niu Y N, Chen Z H, Shabala L, Meinke H, Venkataraman G, Pareek A, Xu J L, Zhou M X. Molecular mechanisms of salinity tolerance in rice. Crop J, 2021, 9: 506-520.
doi: 10.1016/j.cj.2021.03.005 |
[22] |
周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾俊飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制. 中国水稻科学, 2023, 37: 153-165.
doi: 10.16819/j.1001-7216.2023.221005 |
Zhou Z L, Lin B, Zhou Q, Yang B, Liu Y, Zhou T Y, Wang B X, Gu J F, Xu D Y, Yang J C. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms. Chin J Rice Sci, 2023, 37: 153-165 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2023.221005 |
|
[23] |
Radanielson A M, Gaydon D S, Li T, Angeles O, Roth C H. Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur J Agron, 2018, 100: 44-55.
doi: 10.1016/j.eja.2018.01.015 |
[24] |
Huang J, Zhu C Q, Hussain S, Huang J, Liang Q D, Zhu L F, Cao X C, Kong Y L, Li Y F, Wang L P, Li J W, Zhang J H. Effects of nitric oxide on nitrogen metabolism and the salt resistance of rice (Oryza sativa L.) seedlings with different salt tolerances. Plant Physiol Biochem, 2020, 155: 374-383.
doi: 10.1016/j.plaphy.2020.06.013 |
[25] |
Liu C T, Mao B G, Yuan D Y, Chu C C, Duan M J. Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J, 2022, 10: 13-25.
doi: 10.1016/j.cj.2021.02.010 |
[26] |
Wang X X, Wang W C, Huang J L, Peng S B, Xiong D L. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa). Physiol Plant, 2018, 163: 45-58.
doi: 10.1111/ppl.2018.163.issue-1 |
[27] |
Ali S, Gautam R K, Mahajan R, Krishnamurthy S L, Sharma S K, Singh R K, Ismail A M. Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses. Field Crops Res, 2013, 154: 65-73.
doi: 10.1016/j.fcr.2013.06.011 |
[28] |
Joshi R, Sahoo K K, Tripathi A K, Kumar R, Gupta B K, Pareek A, Singla-Pareek S L. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ, 2018, 41: 936-946.
doi: 10.1111/pce.v41.5 |
[29] |
Wang Z Q, Zhang W Y, Beebout S S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
doi: 10.1016/j.fcr.2016.03.006 |
[30] |
李赞堂, 王市银, 姜雯宇, 张帅, 张少斌, 徐江. 穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制. 作物学报, 2018, 44: 581-590.
doi: 10.3724/SP.J.1006.2018.00581 |
Li Z T, Wang S Y, Jiang W Y, Zhang S, Zhang S B, Xu J. Physiological mechanisms of promoting source, sink, and grain filling by 24-epibrassinolide (EBR) applied at panicle initiation stage of rice. Acta Agron Sin, 2018, 44: 581-590 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00581 |
|
[31] | 顾世梁, 朱庆森, 杨建昌, 彭少兵. 不同水稻材料籽粒灌浆特性的分析. 作物学报, 2001, 27: 7-14. |
Gu S L, Zhu Q S, Yang J C, Peng S B. Analysis on grain filling characteristic for different rice types. Acta Agron Sin, 2001, 27: 7-14 (in Chinese with English abstract). | |
[32] |
陈红阳, 贾琰, 赵宏伟, 瞿炤珺, 王新鹏, 段雨阳, 杨蕊, 白旭, 王常丞. 结实期低温胁迫对水稻强、弱势粒淀粉形成与积累的影响. 中国水稻科学, 2022, 36: 487-504.
doi: 10.16819/j.1001-7216.2022.211105 |
Chen H Y, Jia Y, Zhao H W, Qu Z J, Wang X P, Duan Y Y, Yang R, Bai X, Wang C C. Effects of low temperature stress during grain filling on starch formation and accumulation of superior and inferior grains in rice. Chin J Rice Sci, 2022, 36: 487-504 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.211105 |
|
[33] | 王新鹏. 孕穗期干旱胁迫对寒地粳稻碳代谢及产量形成影响的研究. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2020. |
Wang X P. Effects of Drought Stress at Booting Stage on Carbon Metabolism and Yield Formation of Japonica Rice in Cold Region. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020 (in Chinese with English abstract). | |
[34] |
成臣, 曾勇军, 程慧煌, 谭雪明, 商庆银, 曾研华, 石庆华. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素含量、淀粉积累及其合成关键酶活性的影响. 中国水稻科学, 2019, 33: 57-67.
doi: 10.16819/j.1001-7216.2019.8077 |
Cheng C, Zeng Y J, Cheng H H, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108. Chin J Rice Sci, 2019, 33: 57-67 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8077 |
|
[35] |
Zhu G L, Li H T, Shi X X, Wang Y, Zhi W F, Chen X B, Liu J W, Ren Z, Shi Y, Ji Z Y, Jiao X R, Ibrahim M E H, Nimir N E A, Zhou G S. Nitrogen management enhanced plant growth, antioxidant ability, and grain yield of rice under salinity stress. Agron J, 2020, 112: 550-563.
doi: 10.1002/agj2.v112.1 |
[1] | 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064. |
[2] | 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990. |
[3] | 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052. |
[4] | 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870. |
[5] | 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042. |
[6] | 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079. |
[7] | 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770. |
[8] | 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555. |
[9] | 贺佳奇, 白羿雄, 姚晓华, 姚有华, 安立昆, 王玉琴, 王小萍, 李新, 崔永梅, 吴昆仑. 刈割对青稞恢复特性及籽粒和秸秆产量品质特性的影响[J]. 作物学报, 2024, 50(3): 747-755. |
[10] | 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708. |
[11] | 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694. |
[12] | 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450. |
[13] | 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492. |
[14] | 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293. |
[15] | 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528. |
|