欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 734-746.doi: 10.3724/SP.J.1006.2024.32021

• 耕作栽培·生理生化 • 上一篇    下一篇

盐胁迫对水稻籽粒灌浆特性及产量形成的影响

韦还和1(), 张翔1, 朱旺2, 耿孝宇1, 马唯一1, 左博源1, 孟天瑶2, 高平磊1, 陈英龙1, 许轲1, 戴其根1,*()   

  1. 1江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学水稻产业工程技术研究院 / 农业农村部盐碱土改良与利用(滨海盐碱地)重点实验室 / 国家耐盐碱水稻技术创新中心华东中心, 扬州大学, 江苏扬州 225009
    2扬州大学教育部农业与农产品安全国际合作联合实验室 / 扬州大学农业科技发展研究院, 扬州大学 225009
  • 收稿日期:2023-05-23 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-10-07
  • 通讯作者: *戴其根, E-mail: qgdai@yzu.edu.cn
  • 作者简介:E-mail: hhwei@yzu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFE0113400);国家重点研发计划项目(2022YFD1500402);国家自然科学基金项目(32001466);江苏省农业科技自主创新资金项目(CX(23)1020);江苏省高等学校基础科学(自然科学)研究重大项目(23KJA210004);中国博士后科学基金项目(2020M671628);江苏省碳达峰碳中和科技创新专项资金(BE2022304);江苏省碳达峰碳中和科技创新专项资金(BE2022305);江苏省高校优势学科建设工程项目(PAPD)

Effects of salinity stress on grain-filling characteristics and yield of rice

WEI Huan-He1(), ZHANG Xiang1, ZHU Wang2, GENG Xiao-Yu1, MA Wei-Yi1, ZUO Bo-Yuan1, MENG Tian-Yao2, GAO Ping-Lei1, CHEN Ying-Long1, XU Ke1, DAI Qi-Gen1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu / Co-Innovation Center for Modern Production Technology of Grain Crops / Research Institute of Rice Industrial Engineering Technology / Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China / East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Joint International Research Laboratory of Agri-culture and Agro-product Safety, Ministry of Education / Institute of Agricultural Science and Technological Development, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-05-23 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-10-07
  • Contact: *E-mail: qgdai@yzu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFE0113400);National Key Research and Development Program of China(2022YFD1500402);National Natural Science Foundation of China(32001466);Jiangsu Agricultural Science and Technology Innovation Fund(CX(23)1020);Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJA210004);China Postdoctoral Science Foundation(2020M671628);Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology(BE2022304);Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology(BE2022305);Priority Academic Program Development PAPD of Jiangsu Higher Education Institutions

摘要:

以江苏沿海滩涂主栽常规粳稻南粳9108和淮稻5号为试材, 研究不同盐胁迫处理包括对照(CK, 盐浓度0)、中盐(medium-salinity stress, MS, 盐浓度0.15%)和高盐(high-salinity stress, HS, 盐浓度0.3%)对水稻籽粒灌浆及产量形成生理特性的影响。结果表明: (1) 与对照相比, 中盐和高盐胁迫均显著降低水稻产量, 降幅分别为26.3%和57.7% (两品种平均); 盐胁迫处理下, 穗数、每穗粒数、结实率和千粒重均显著下降。(2) 盐胁迫显著降低穗长、每穗强势粒和弱势粒籽粒数、结实率和千粒重, 其中强势粒结实率和千粒重的降幅均低于弱势粒。(3) 盐胁迫下, 水稻植株抽穗期和成熟期干物重以及抽穗期至成熟期干物质积累量显著下降, 但收获指数明显增加。此外, 抽穗后15 d和30 d盐胁迫处理的叶片净光合速率和SPAD值均显著低于对照。(4) 盐胁迫降低籽粒最大灌浆速率和平均灌浆速率, 但达最大灌浆速率时间和有效灌浆天数有所增加; 盐胁迫提高了强势粒和弱势粒有效灌浆天数, 但平均灌浆速率显著下降, 其中强势粒灌浆量的降幅低于弱势粒。(5) 盐胁迫下, 籽粒腺苷二磷酸焦磷酸化酶(AGPase)、淀粉合成酶(SSS)、颗粒型淀粉合成酶(GBSS)和淀粉分支酶(SBE)活性显著下降, 其中弱势粒的降幅高于强势粒。综上所述, 盐胁迫下水稻强势粒和弱势粒灌浆天数有所增加, 但籽粒灌浆速率及其淀粉合成关键酶活性显著下降, 致使籽粒充实度、粒重和产量显著下降, 其中盐胁迫对弱势粒抑制作用大于强势粒。

关键词: 盐胁迫, 水稻, 籽粒灌浆, 产量

Abstract:

To investigate the effect of salinity stress on grain-filling and yield of rice, the conventional japonica rice Nanjing 9108 and Huaidao 5 which were widely planted in saline alkali soil of Jiangsu province were used as the experimental materials. The treatments including the control (CK, 0 salt concentration), medium-salinity (medium-salinity, MS, 0.15% salt concentration), and high salt (high salinity, 0.3% salt concentration) were set. The results showed that, compared with the CK: (1) MS and HS both significantly reduced rice grain yield by 26.3% and 57.7% (average of the two cultivars), respectively. The number of panicles, spikelets per panicle, filled-grain percentage, and 1000-grain weight were all significantly decreased under salinity stress. (2) Salinity stress significantly reduced rice panicle length, the number of superior and inferior grains per panicle, filled-grain percentage, and 1000-grain weight. The decreases in filled-grain percentage and 1000-grain weight of superior grains per panicle under salinity stress were lower than those of inferior grains. (3) Salinity stress significantly reduced the dry matter weight of plants at heading and maturity stages, and the dry matter accumulation from heading to maturity, while increased the harvest index. The net photosynthetic rate and SPAD value at 15 and 30 days after heading of rice leaves under salinity stress were significantly lower than CK. (4) Salinity stress reduced the maximum and mean grain-filling rates of grains during grain-filling period, while the time to achieve the maximum grain-filling rate and effective grain-filling duration of grains increased. Salinity stress increased the days at the first, middle, and late stages during grain-filling period for superior and inferior grains, while the mean grain-filling rate and grain filling amount significantly decreased at the first, middle, and late stages during grain-filling period. The decrease in grain filling amount of superior grains at the first, middle, and late stages during grain-filling period was lower than that of inferior grains. (5) Salinity stress significantly decreased activities of ADP-glucose pyrophosphorylase (AGPase), starch synthases (SSS), granule-bound starch synthase (GBSS), and starch branching enzymes (SBE), and the decrease was greater in inferior grains than superior grains. In conclusion, the grain-filling days for superior and inferior grains increased under salinity stress, but the decrease in grain filling rate and activities of key enzymes involved in starch synthesis was greater, resulting in a significant deterioration in grain filling traits and a significant decrease in grain weight and yield. The inhibitory effects of salinity stress on grain-filling rate and grain filling amount of inferior grains were higher than those of superior grains.

Key words: salinity stress, rice, grain-filling, grain yield

表1

盐胁迫对水稻产量及其构成因素的影响"

年份
Year
品种
Cultivar
处理
Treatment
穗数
Number of
panicles
(×104 hm-2)
每穗粒数
Spikelets per
panicle
结实率
Percentage
of filled
grains (%)
千粒重
1000-grain weight (g)
实产
Actual yield
(t hm-2)
抽穗期至成熟期天数
Duration from heading to maturity (d)
2021 南粳9108
Nanjing 9108
对照 CK 347 a 139.1 a 88.9 a 24.3 a 9.69 a 54
中盐 MS 327 b 120.4 b 86.2 b 23.6 ab 7.38 b 53
高盐 HS 271 c 87.6 c 83.1 c 21.6 b 4.02 c 52
淮稻5号
Huaidao 5
对照 CK 371 a 126.2 a 89.7 a 25.4 a 9.48 a 55
中盐 MS 355 b 100.7 b 88.1 ab 24.8 ab 7.19 b 53
高盐 HS 288 c 82.8 c 82.7 b 22.7 b 4.10 c 51
2022 南粳9108
Nanjing 9108
对照 CK 357 a 133.7 a 89.9 a 24.7 a 9.95 a 55
中盐 MS 317 b 114.4 b 87.4 b 23.2 b 7.10 b 54
高盐 HS 287 c 97.0 c 82.3 c 22.0 c 4.34 c 52
淮稻5号
Huaidao 5
对照 CK 365 a 122.0 a 90.7 a 25.8 a 9.66 a 54
中盐 MS 347 ab 106.3 b 87.1 b 24.2 b 6.97 b 53
高盐 HS 304 b 74.4 c 83.5 c 23.1 c 3.97 c 52
显著性分析 P-value
年份 Year (Y) NS NS NS NS NS
品种 Cultivar (C) * * NS ** **
处理 Treatment (T) ** ** ** ** **
年份品种 Y × C NS NS NS NS NS
年份处理 Y × T NS NS NS NS NS
品种处理 C × T * NS NS * **
年份品种处理 Y × C × T NS NS NS NS NS

表2

盐胁迫对水稻穗部特征的影响"

品种
Cultivar
处理
Treatment
穗长
Panicle length (cm)
强势粒 Superior grains 弱势粒 Inferior grains
籽粒数
Number of
grains
结实率
Percentage of filled
grains (%)
千粒重
1000-grain
weight (g)
籽粒数
Number of grains
结实率
Percentage of filled grains (%)
千粒重
1000-grain
weight (g)
南粳9108
Nanjing 9108
对照 CK 13.6 a 15.1 a 93.7 a 26.4 a 29.0 a 84.5 a 22.9 a
中盐 MS 12.3 b 12.5 b 90.8 b 25.0 b 24.6 b 81.7 b 21.1 b
高盐 HS 11.9 b 11.5 c 87.3 c 23.9 c 16.7 c 77.9 c 20.1 c
淮稻5号
Huaidao 5
对照 CK 12.9 a 14.2 a 94.2 a 27.8 a 26.5 a 83.8 a 23.8 a
中盐 MS 11.7 b 11.6 b 92.1 ab 26.5 b 20.9 b 81.3 ab 22.2 b
高盐 HS 11.3 b 10.9 c 88.5 b 24.9 c 13.7 c 76.7 b 20.5 c

表3

盐胁迫对水稻干物重和收获指数的影响"

品种
Cultivar
处理
Treatment
干物重 Dry matter weight (t hm-2) 干物重积累量 Dry matter accumulation (t hm-2) 收获指数
Harvest index
拔节期 抽穗期 成熟期 拔节期-抽穗期 抽穗期-成熟期
Jointing Heading Maturity Jointing to heading Heading to maturity
南粳9108 对照 CK 4.7 a 10.8 a 17.1 a 6.05 a 6.37 a 0.495 c
Nanjing 9108 中盐 MS 3.2 b 7.9 b 12.0 b 4.65 b 4.19 b 0.517 b
高盐 HS 2.4 c 4.6 c 6.8 c 2.17 c 2.23 c 0.534 a
淮稻5号 对照 CK 4.5 a 10.5 a 16.6 a 5.95 a 6.19 a 0.499 c
Huaidao 5 中盐 MS 3.3 b 7.7 b 11.8 b 4.39 b 4.10 b 0.521 b
高盐 HS 2.1 c 4.3 c 6.4 c 2.20 c 2.10 c 0.541 a

表4

盐胁迫对水稻抽穗后叶片净光合速率和相对叶绿素含量的影响"

品种
Cultivar
处理
Treatment
净光合速率Leaf net photosynthetic rate (µmol m-2 s-1) 相对叶绿素含量SPAD values
抽穗后15 d
15 days after heading
抽穗后30 d
30 days after heading
抽穗后15 d
15 days after heading
抽穗后30 d
30 days after heading
南粳9108
Nanjing 9108
对照 CK 23.4 a 17.7 a 44.2 a 36.5 a
中盐 MS 21.8 ab 16.6 b 41.6 b 33.4 b
高盐 HS 19.2 b 14.2 c 35.6 c 28.6 c
淮稻5号
Huaidao 5
对照 CK 22.8 a 16.8 a 43.6 a 35.1 a
中盐 MS 21.1 b 15.7 b 40.5 b 32.4 b
高盐 HS 18.7 c 13.4 c 34.5 c 26.7 c

图1

盐胁迫下水稻籽粒增重动态 CK: 对照; MS: 中盐; HS: 高盐。SG: 强势粒; IG: 弱势粒。"

表5

盐胁迫下水稻籽粒灌浆过程的拟合方程"

品种
Cultivar
处理
Treatment
粒位
Grain position
方程参数 Parameter 方程拟合
Simulated equation
A B K N
南粳9108
Nanjing 9108
对照 CK 强势粒 SG 21.97 7222.25 0.4987 4.5520 $Y=21.97{{\left( 1+7222.25{{\text{e}}^{-0.4987X}} \right)}^{-\ \frac{1}{4.5520}}}$ R2=0.976
弱势粒 IG 18.47 10,231.27 0.2951 3.7955 $Y=18.47{{\left( 1+10231.27{{\text{e}}^{-0.2951X}} \right)}^{-\ \frac{1}{3.7955}}}$ R2=0.985
中盐 MS 强势粒 SG 20.86 4853.81 0.4083 3.5638 $Y=20.86{{\left( 1+4853.81{{\text{e}}^{-0.4083X}} \right)}^{-\ \frac{1}{3.5638}}}$ R2=0.985
弱势粒 IG 17.42 8217.82 0.2699 3.3456 $Y=17.42{{\left( 1+8217.82{{\text{e}}^{-0.2699X}} \right)}^{-\ \frac{1}{3.3456}}}$ R2=0.987
高盐 HS 强势粒 SG 19.70 4417.23 0.3846 3.1275 $Y=19.70{{\left( 1+4417.23{{\text{e}}^{-0.3846X}} \right)}^{-\ \frac{1}{3.1275}}}$ R2=0.988
弱势粒 IG 16.53 11,967.81 0.2696 3.2366 $Y=16.53{{\left( 1+11967.81{{\text{e}}^{-0.2696X}} \right)}^{-\ \frac{1}{3.2366}}}$ R2=0.986
淮稻5号
Huaidao 5
对照 CK 强势粒 SG 23.01 7682.64 0.4864 4.5317 $Y=23.01{{\left( 1+7682.64{{\text{e}}^{-0.4864X}} \right)}^{-\ \frac{1}{4.5317}}}$ R2=0.988
弱势粒 IG 19.24 11,824.47 0.2907 3.9182 $Y=19.24{{\left( 1+11824.47{{\text{e}}^{-0.2907X}} \right)}^{-\ \frac{1}{3.9182}}}$ R2=0.978
中盐 MS 强势粒 SG 21.65 4853.82 0.4021 3.4138 $Y=21.65{{\left( 1+4853.82{{\text{e}}^{-0.4021X}} \right)}^{-\ \frac{1}{3.4138}}}$ R2=0.983
弱势粒 IG 18.44 11,416.20 0.2736 3.6728 $Y=18.44{{\left( 1+11416.20{{\text{e}}^{-0.2736X}} \right)}^{-\ \frac{1}{3.6728}}}$ R2=0.989
高盐 HS 强势粒 SG 20.22 4417.29 0.3847 3.1275 $Y=20.22{{\left( 1+4417.29{{\text{e}}^{-0.3847X}} \right)}^{-\ \frac{1}{3.1275}}}$ R2=0.990
弱势粒 IG 16.71 11,967.81 0.2662 3.2366 $Y=16.71{{\left( 1+11967.81{{\text{e}}^{-0.2662X}} \right)}^{-\ \frac{1}{3.2366}}}$ R2=0.986

图2

盐胁迫下水稻籽粒灌浆阶段的灌浆速率 CK: 对照; MS: 中盐; HS: 高盐。SG: 强势粒; IG: 弱势粒。"

表6

盐胁迫下水稻籽粒灌浆特征参数"

品种
Cultivar
处理
Treatment
粒位
Grain position
籽粒灌浆特征参数 Grain-filling parameters
最大灌浆速率
Maximum grain-filling rate
(mg grain-1 d-1)
平均灌浆速率
Mean grain-filling rate (mg grain-1 d-1)
达最大灌浆速率的时间
The time to achieve the maximum
grain-filling rate (d)
有效灌浆时间
Effective
grain-filling
days (d)
南粳9108
Nanjing 9108
对照 CK 强势粒 SG 1.35 0.84 14.8 24.0
弱势粒 IG 0.75 0.47 26.8 42.3
中盐 MS 强势粒 SG 1.22 0.77 17.7 28.9
弱势粒 IG 0.70 0.44 28.9 45.9
高盐 HS 强势粒 SG 1.17 0.74 18.9 30.8
弱势粒 IG 0.67 0.43 30.5 47.5
淮稻5号
Huaidao 5
对照 CK 强势粒 SG 1.39 0.86 15.3 24.7
弱势粒 IG 0.76 0.47 27.6 43.3
中盐 MS 强势粒 SG 1.28 0.80 18.1 29.4
弱势粒 IG 0.71 0.44 29.4 46.1
高盐 HS 强势粒 SG 1.20 0.76 18.9 30.8
弱势粒 IG 0.67 0.42 30.9 48.1

表7

盐胁迫下水稻籽粒灌浆前、中、后期3个阶段的特征"

品种
Cultivar
处理
Treatment
粒位
Grain
position
前期 Early stage 中期 Middle stage 后期 Late stage
天数
Days
(d)
平均灌浆速率MGR
(mg grain-1 d-1)
灌浆量
GFA (mg)
天数
Days
(d)
平均灌浆速率
MGR
(mg grain-1 d-1)
灌浆量
GFA (mg)
天数
Days
(d)
平均灌浆速率
MGR
(mg grain-1 d-1)
灌浆量
GFA (mg)
南粳9108
Nanjing 9108
对照 CK 强势粒 SG 10.8 0.94 152.1 8.0 1.21 146.5 5.2 0.38 29.8
弱势粒 IG 20.4 0.38 226.5 12.8 0.67 249.0 9.1 0.21 54.8
中盐 MS 强势粒 SG 13.1 0.65 107.1 9.1 1.08 123.2 6.7 0.33 27.8
弱势粒 IG 22.2 0.31 170.9 13.5 0.62 205.8 10.2 0.19 47.7
高盐 HS 强势粒 SG 14.2 0.53 87.4 9.3 1.04 110.5 7.3 0.31 26.3
弱势粒 IG 23.8 0.27 108.3 13.4 0.60 133.6 10.3 0.18 31.4
淮稻5号
Huaidao 5
对照 CK 强势粒 SG 11.2 0.94 149.6 8.2 1.24 144.5 5.3 0.39 29.4
弱势粒 IG 21.0 0.39 218.8 13.2 0.67 235.0 9.2 0.21 51.0
中盐 MS 强势粒 SG 13.5 0.65 101.1 9.1 1.13 120.0 6.8 0.35 27.6
弱势粒 IG 22.5 0.34 160.5 13.7 0.63 180.7 9.9 0.19 40.3
高盐 HS 强势粒 SG 14.2 0.55 85.0 9.3 1.06 107.5 7.3 0.32 25.6
弱势粒 IG 24.1 0.27 89.8 13.6 0.60 110.8 10.4 0.18 26.0

表8

盐胁迫对水稻籽粒淀粉合成关键酶活性的影响"

品种
Cultivar
处理
Treatment
粒位
Grain
position
AGPase酶活性
AGPase activity
(mol min-1 mg-1)
GBSS酶活性
GBSS activity
(mol min-1 mg-1)
SSS酶活性
SSS activity
(mol min-1 mg-1)
SBE酶活性
SBE activity
(U g-1)
15 DAH 30 DAH 45 DAH 15 DAH 30 DAH 45 DAH 15 DAH 30 DAH 45 DAH 15 DAH 30 DAH 45 DAH
南粳9108
Nanjing 9108
对照 CK 强势粒 SG 15.8 a 43.8 a 14.1 a 6.4 a 16.8 a 4.5 a 3.7 a 6.1 a 2.7 a 4.2 a 6.8 a 3.2 a
弱势粒 IG 11.8 b 37.4 b 7.6 bc 5.6 b 14.8 b 3.3 b 3.2 b 4.8 b 1.9 b 3.8 b 5.8 b 2.7 b
中盐 MS 强势粒 SG 10.3 c 28.7 c 8.6 b 5.1 c 13.2 c 3.2 b 2.9 b 4.8 b 2.1 b 3.2 c 5.2 c 2.6 b
弱势粒 IG 7.3 d 23.9 d 4.3 d 3.9 d 10.3 d 2.0 cd 2.3 c 3.6 c 1.3 c 2.8 d 4.3 d 2.1 c
高盐 HS 强势粒 SG 6.3 d 23.7 d 6.2 c 3.4 e 10.9 d 2.3 c 1.9 d 3.7 c 1.2 c 1.9 e 3.8 e 1.7 d
弱势粒 IG 4.3 e 19.3 e 3.0 d 2.2 f 8.8 e 1.4 d 1.2 e 2.9 d 0.7 d 1.3 f 2.7 f 1.1 e
淮稻5号
Huaidao 5
对照 CK 强势粒 SG 15.7 a 42.7 a 13.5 a 6.8 a 17.0 a 4.7 a 3.6 a 5.9 a 2.9 a 4.4 a 6.6 a 3.1 a
弱势粒 IG 12.8 b 36.5 b 7.3 b 5.5 b 15.1 b 3.4 bc 3.1 b 5.0 b 1.6 c 3.5 b 5.7 b 2.8 b
中盐 MS 强势粒 SG 10.7 c 29.8 c 7.9 b 5.6 b 13.8 c 3.8 b 2.7 c 4.9 b 2.0 b 3.6 b 5.4 b 2.4 c
弱势粒 IG 8.0 d 24.5 d 3.9 d 4.0 c 11.1 d 2.4 c 2.2 d 3.7 c 1.0 d 2.6 c 4.6 c 1.8 d
高盐 HS 强势粒 SG 6.1 e 23.7 d 6.4 c 3.7 c 10.3 d 2.1 c 2.1 d 3.2 d 1.5 c 1.8 d 4.0 d 1.8 d
弱势粒 IG 4.6 f 18.9 e 3.1 d 2.0 d 7.8 e 1.3 d 1.3 e 2.0 e 0.6 e 1.2 e 2.5 e 1.2 e
[1] Yuan L P. Development of hybrid rice to ensure food security. Rice Sci, 2014, 21: 1-2.
doi: 10.1016/S1672-6308(13)60167-5
[2] Zhang J Z, He C X, Chen L, Cao S X. Improving food security in China by taking advantage of marginal and degraded lands. J Clean Prod, 2018, 171: 1020-1030.
doi: 10.1016/j.jclepro.2017.10.110
[3] Wang J Y, Zhang Z W, Liu Y S. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy, 2018, 74: 204-213.
doi: 10.1016/j.landusepol.2017.11.037
[4] Radanielson A M, Gaydon D S, Khan M M R, Chaki A K, Rahman M A, Angeles O, Li T, Ismail A. Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crops Res, 2018, 229: 27-36.
doi: 10.1016/j.fcr.2018.08.020
[5] 韦还和, 葛佳琳, 张徐彬, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系. 作物学报, 2020, 46: 1238-1247.
doi: 10.3724/SP.J.1006.2020.02001
Wei H H, Ge J L, Zhang X B, Meng T Y, Lu Y, Li X Y, Tao Y, Ding E H, Chen Y L, Dai Q G. Tillering characteristics and its relationships with population productivity of japonica rice Nanjing 9108 under salinity stress. Acta Agron Sin, 2020, 46: 1238-1247 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.02001
[6] 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的相应及耐盐机理研究进展. 中国水稻科学, 2022, 36: 105-117.
doi: 10.16819/j.1001-7216.2022.210609
Wang Y, Zhang R, Liu Y H, Li R K, Ge J F, Deng S W, Zhang X B, Chen Y L, Wei H H, Dai Q G. Rice response to salt stress and research progress in salt tolerance mechanism. Chin J Rice Sci, 2022, 36: 105-117 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.210609
[7] Zheng C, Liu C T, Liu L, Tan Y N, Sheng X B, Yu D, Sun Z Z, Sun X W, Chen J, Yuan D Y, Duan M J. Effect of salinity stress on rice yield and grain quality: a meta-analysis. Eur J Agron, 2023, 144: 126765.
doi: 10.1016/j.eja.2023.126765
[8] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032
[9] 徐云姬, 唐树鹏, 简超群, 蔡文璐, 张伟杨, 王志琴, 杨建昌. 多胺与乙烯对水稻籽粒灌浆、粒重和品质的调控作用. 中国水稻科学, 2022, 36: 327-335.
doi: 10.16819/j.1001-7216.2022.211010
Xu Y J, Tang S P, Jian C Q, Cai W L, Zhang W Y, Wang Z Q, Yang J C. Roles of polyamines and ethylene in grain filling, grain weight and quality of rice. Chin J Rice Sci, 2022, 36: 327-335 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.211010
[10] Huang J W, Pan Y P, Chen H F, Zhang Z X, Fang C X, Shao C H, Amjad H, Lin W W, Lin W X. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Res, 2020, 258: 107962.
doi: 10.1016/j.fcr.2020.107962
[11] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-193.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193 (in Chinese with English abstract).
[12] Lawas L M F, Shi W J, Yoshimoto M, Hasegawa T, Hincha D K, Zuther E, Jagadish S V K. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Res, 2018, 229: 66-77.
doi: 10.1016/j.fcr.2018.09.009
[13] 左静红. 苏打盐碱胁迫对北方粳稻灌浆特性及穗部性状的影响. 中国科学院大学硕士学位论文, 北京, 2013.
Zuo J H. Effects of Saline-alkaline Stress on the Grain Filling Characteristics and Panicle Traits of Northern Japonica. MS Thesis of Chinese Academy Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[14] 朱宽宇, 展鹏飞, 陈静, 王志琴, 杨建昌, 赵步洪. 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响. 中国水稻科学, 2018, 32: 155-168.
Zhu K Y, Zhan P F, Chen J, Wang Z Q, Yang J C, Zhao B H. Effects of irrigation regimes during grain filling under different nitrogen rates on inferior spikelets grain-filling and grain yield of rice. Chin J Rice Sci, 2018, 32: 155-168 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2018.7060
[15] Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ Exp Bot, 2016, 132: 28-41.
doi: 10.1016/j.envexpbot.2016.08.006
[16] 程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报, 2001, 27: 201-206.
Cheng F M, Jiang D A, Wu P, Shi C H. Changes and temperature effects of starch synthase during grain filling in early indica rice. Acta Agron Sin, 2001, 27: 201-206 (in Chinese with English abstract).
[17] 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究. 作物学报, 1997, 23: 338-344.
Li T G, Shen B, Chen N, Luo Y K. Study on the role of Q enzyme in the formation of chalky rice grains. Acta Agron Sin, 1997, 23: 338-344 (in Chinese with English abstract).
[18] Meng T Y, Zhang X B, Ge J L, Chen X, Yang Y L, Zhu G L, Chen Y L, Zhou G S, Wei H H, Dai Q G. Agronomic and physiological traits facilitating better yield performance of japonica/indica hybrids in saline fields. Field Crops Res, 2021, 271: 108255.
doi: 10.1016/j.fcr.2021.108255
[19] Khan I, Muhammad A, Chattha M U, Skalicky M, Chattha M B, Ayub M A, Anwar M R, Soufan W, Hassan M U, Rahman M A, Brestic M, Zivcak M, Sabagh A E. Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application. Front Plant Sci, 2022, 13: 840900.
doi: 10.3389/fpls.2022.840900
[20] 周根友, 翟彩娇, 邓先亮, 张姣, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响. 中国水稻科学, 2018, 32: 146-154.
Zhou G Y, Zhai C J, Deng X L, Zhang J, Zhang Z L, Dai Q G, Cui S Y. Performance of yield, photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro-plots. Chin J Rice Sci, 2018, 32: 146-154 (in Chinese with English abstract).
[21] Chen T X, Shabala S, Niu Y N, Chen Z H, Shabala L, Meinke H, Venkataraman G, Pareek A, Xu J L, Zhou M X. Molecular mechanisms of salinity tolerance in rice. Crop J, 2021, 9: 506-520.
doi: 10.1016/j.cj.2021.03.005
[22] 周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾俊飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制. 中国水稻科学, 2023, 37: 153-165.
doi: 10.16819/j.1001-7216.2023.221005
Zhou Z L, Lin B, Zhou Q, Yang B, Liu Y, Zhou T Y, Wang B X, Gu J F, Xu D Y, Yang J C. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms. Chin J Rice Sci, 2023, 37: 153-165 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2023.221005
[23] Radanielson A M, Gaydon D S, Li T, Angeles O, Roth C H. Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur J Agron, 2018, 100: 44-55.
doi: 10.1016/j.eja.2018.01.015
[24] Huang J, Zhu C Q, Hussain S, Huang J, Liang Q D, Zhu L F, Cao X C, Kong Y L, Li Y F, Wang L P, Li J W, Zhang J H. Effects of nitric oxide on nitrogen metabolism and the salt resistance of rice (Oryza sativa L.) seedlings with different salt tolerances. Plant Physiol Biochem, 2020, 155: 374-383.
doi: 10.1016/j.plaphy.2020.06.013
[25] Liu C T, Mao B G, Yuan D Y, Chu C C, Duan M J. Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J, 2022, 10: 13-25.
doi: 10.1016/j.cj.2021.02.010
[26] Wang X X, Wang W C, Huang J L, Peng S B, Xiong D L. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa). Physiol Plant, 2018, 163: 45-58.
doi: 10.1111/ppl.2018.163.issue-1
[27] Ali S, Gautam R K, Mahajan R, Krishnamurthy S L, Sharma S K, Singh R K, Ismail A M. Stress indices and selectable traits in SALTOL QTL introgressed rice genotypes for reproductive stage tolerance to sodicity and salinity stresses. Field Crops Res, 2013, 154: 65-73.
doi: 10.1016/j.fcr.2013.06.011
[28] Joshi R, Sahoo K K, Tripathi A K, Kumar R, Gupta B K, Pareek A, Singla-Pareek S L. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ, 2018, 41: 936-946.
doi: 10.1111/pce.v41.5
[29] Wang Z Q, Zhang W Y, Beebout S S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
doi: 10.1016/j.fcr.2016.03.006
[30] 李赞堂, 王市银, 姜雯宇, 张帅, 张少斌, 徐江. 穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制. 作物学报, 2018, 44: 581-590.
doi: 10.3724/SP.J.1006.2018.00581
Li Z T, Wang S Y, Jiang W Y, Zhang S, Zhang S B, Xu J. Physiological mechanisms of promoting source, sink, and grain filling by 24-epibrassinolide (EBR) applied at panicle initiation stage of rice. Acta Agron Sin, 2018, 44: 581-590 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00581
[31] 顾世梁, 朱庆森, 杨建昌, 彭少兵. 不同水稻材料籽粒灌浆特性的分析. 作物学报, 2001, 27: 7-14.
Gu S L, Zhu Q S, Yang J C, Peng S B. Analysis on grain filling characteristic for different rice types. Acta Agron Sin, 2001, 27: 7-14 (in Chinese with English abstract).
[32] 陈红阳, 贾琰, 赵宏伟, 瞿炤珺, 王新鹏, 段雨阳, 杨蕊, 白旭, 王常丞. 结实期低温胁迫对水稻强、弱势粒淀粉形成与积累的影响. 中国水稻科学, 2022, 36: 487-504.
doi: 10.16819/j.1001-7216.2022.211105
Chen H Y, Jia Y, Zhao H W, Qu Z J, Wang X P, Duan Y Y, Yang R, Bai X, Wang C C. Effects of low temperature stress during grain filling on starch formation and accumulation of superior and inferior grains in rice. Chin J Rice Sci, 2022, 36: 487-504 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.211105
[33] 王新鹏. 孕穗期干旱胁迫对寒地粳稻碳代谢及产量形成影响的研究. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2020.
Wang X P. Effects of Drought Stress at Booting Stage on Carbon Metabolism and Yield Formation of Japonica Rice in Cold Region. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020 (in Chinese with English abstract).
[34] 成臣, 曾勇军, 程慧煌, 谭雪明, 商庆银, 曾研华, 石庆华. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素含量、淀粉积累及其合成关键酶活性的影响. 中国水稻科学, 2019, 33: 57-67.
doi: 10.16819/j.1001-7216.2019.8077
Cheng C, Zeng Y J, Cheng H H, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108. Chin J Rice Sci, 2019, 33: 57-67 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8077
[35] Zhu G L, Li H T, Shi X X, Wang Y, Zhi W F, Chen X B, Liu J W, Ren Z, Shi Y, Ji Z Y, Jiao X R, Ibrahim M E H, Nimir N E A, Zhou G S. Nitrogen management enhanced plant growth, antioxidant ability, and grain yield of rice under salinity stress. Agron J, 2020, 112: 550-563.
doi: 10.1002/agj2.v112.1
[1] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[2] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[3] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[4] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[5] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[6] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[7] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[8] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[9] 贺佳奇, 白羿雄, 姚晓华, 姚有华, 安立昆, 王玉琴, 王小萍, 李新, 崔永梅, 吴昆仑. 刈割对青稞恢复特性及籽粒和秸秆产量品质特性的影响[J]. 作物学报, 2024, 50(3): 747-755.
[10] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[11] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694.
[12] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[13] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[14] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[15] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .