欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 1043-1052.doi: 10.3724/SP.J.1006.2024.34118

• 耕作栽培·生理生化 • 上一篇    下一篇

长期秸秆还田下施氮量对棉花产量和氮素利用的影响

刘成敏1(), 门雅琦1, 秦都林1,2, 闫晓宇1,3, 张乐1, 孟浩1, 苏寻雅1, 孙学振1, 宋宪亮1, 毛丽丽1,*()   

  1. 1山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
    2山东省农业技术推广中心, 山东济南 250013
    3青岛市崂山区农业农村局, 山东青岛 266000
  • 收稿日期:2023-07-12 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-15
  • 通讯作者: * 毛丽丽, E-mail: maolili6666@163.com
  • 作者简介:E-mail: chengminliu2022@163.com
  • 基金资助:
    山东省自然科学基金项目(ZR2022MC085);山东省农业良种工程项目(2023LZGC002);山东省棉花产业技术研究体系项目(SDAIT-03)

Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field

LIU Cheng-Min1(), MEN Ya-Qi1, QIN Du-Lin1,2, YAN Xiao-Yu1,3, ZHANG Le1, MENG Hao1, SU Xun-Ya1, SUN Xue-Zhen1, SONG Xian-Liang1, MAO Li-Li1,*()   

  1. 1Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2Shandong Agricultural Technology Promotion Center, Jinan 250013, Shandong, China
    3Agriculture and Rural Bureau of Laoshan District, Qingdao 266000, Shandong, China
  • Received:2023-07-12 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-15
  • Contact: * E-mail: maolili6666@163.com
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2022MC085);Shandong Province Agricultural Variety Engineering Project(2023LZGC002);Shandong Cotton Industry Technology Research System(SDAIT-03)

摘要:

施氮能够增加土壤中氮的有效性, 提高植株光合作用, 促进植株对氮的吸收和干物质的积累, 最终增加作物产量。但是在长期高氮秸秆还田条件下, 是否应调整施氮量尚不清楚。为探究长期秸秆还田条件下施氮量对棉花光合速率、干物质和养分积累分配、产量、氮素利用和土壤氮素变化的影响, 本研究设置0 (N0)、150 (N150)、180 (N180)、210 (N210)、240 (N240)、270 (N270)和300 (N300) kg hm-2共7个施氮量处理。与常规施氮量(N300)相比, 2020—2021年, 减氮30% (N210)处理2年均获得了较高产量, 分别为1853.62 kg hm-2和1872.43 kg hm-2, 减氮40% (N180)仅在第1年保持了较高产量, 为1743.68 kg hm-2。2021年, N210的净光合速率、干物质和养分积累量均高于N180, 两者间生殖器官的干物质和养分分配系数、氮肥利用效率未有显著差异, 但N180的土壤表观氮盈余量显著降低了39.15%。综上, 长期秸秆还田条件下, 鲁西北棉区应适量减少施氮量。

关键词: 棉花, 施氮量, 秸秆还田, 产量, 氮素利用, 光合速率

Abstract:

Nitrogen application can increase the availability of nitrogen in the soil, thereby improving plant photosynthesis and promoting the absorption of nitrogen and the accumulation of dry matter, ultimately leading to an increase in crop yield. However, it is unclear whether the nitrogen application rate should be adjusted under long-term high nitrogen straw returning conditions. To investigate the effects of nitrogen application rate on cotton photosynthesis rate, dry matter and nutrient accumulation and distribution, yield, nitrogen utilization, and soil nitrogen changes under long-term straw return conditions, we set up seven nitrogen application rates of pure nitrogen 0 (N0), 150 (N150), 180 (N180), 210 (N210), 240 (N240), 270 (N270), and 300 (N300) kg hm-2. Compared with the commonly used nitrogen application rate (N300) in field agriculture, from 2020 to 2021, a 30% reduction in nitrogen (N210) achieved higher yields, 1853.62 kg hm-2 and 1872.43 kg hm-2 respectively, while a 40% reduction in nitrogen (N180) only maintained a high yield of 1743.68 kg hm-2 in the first year. In 2021, the net photosynthetic rate, dry matter and nutrient accumulation of N210 were higher than that of N180, and there was no significant difference between them in the dry matter and nutrient partition coefficient of reproductive organs and nitrogen fertilizer use efficiency, but the apparent nitrogen surplus of N180 soil was significantly reduced by 39.15%. In summary, under long-term stubble returning conditions, applying 210 kg hm-2 of nitrogen is more suitable for achieving the goal of reducing weight and promoting yield in the northwest cotton region of Shandong.

Key words: cotton, nitrogen application rate, straw returning, yield, nitrogen utilization, photosynthetic rate

图1

2020年和2021年棉花生长季内每月平均温度和降水量"

图2

施氮量对棉花功能叶净光合速率的影响 不同小写字母表示同一年份处理间在0.05概率水平差异显著。N0: 施氮量0 kg hm-2; N150: 施氮量150 kg hm-2; N180: 施氮量180 kg hm-2; N210: 施氮量210 kg hm-2; N240: 施氮量240 kg hm-2; N270: 施氮量270 kg hm-2; N300: 施氮量300 kg hm-2。"

图3

施氮量对棉花地上部干物质积累的影响 处理同图2。"

表1

施氮量对棉花地上部干物质分配的影响(播后150 d)"

处理
Treatment
2020 2021
营养器官分配系数
Proportion of vegetative organs
生殖器官分配系数
Proportion of reproductive organs
营养器官分配系数
Proportion of vegetative organs
生殖器官分配系数
Proportion of reproductive organs
N0 50.69 ab 49.31 ab 47.89 b 52.11 a
N150 50.01 ab 49.99 ab 49.22 ab 50.78 ab
N180 49.74 b 50.26 a 49.34 ab 50.66 ab
N210 49.81 b 50.19 a 48.36 ab 51.64 a
N240 51.10 ab 48.90 ab 50.73 ab 49.27 ab
N270 53.25 a 46.75 b 51.22 a 48.78 b
N300 54.92 a 45.08 b 51.02 a 48.98 b

图4

施氮量对棉花地上部氮素积累的影响 处理同图2。"

表2

施氮量对棉花地上部氮素分配的影响(播后150 d)"

处理
Treatment
2020 2021
营养器官分配系数
Proportion of vegetative organs
生殖器官分配系数
Proportion of reproductive organs
营养器官分配系数
Proportion of vegetative organs
生殖器官分配系数
Proportion of reproductive organs
N0 44.25 bc 55.75 ab 43.81 a 56.19 a
N150 44.30 bc 55.70 ab 43.87 a 56.13 a
N180 44.15 bc 55.85 ab 44.98 a 55.02 a
N210 43.39 c 56.61 a 45.18 a 54.82 a
N240 44.52 abc 55.48 abc 44.62 a 55.38 a
N270 45.28 ab 54.72 bc 45.19 a 54.81 a
N300 46.11 a 53.89 c 45.14 a 54.86 a

表3

施氮量对棉花产量的影响"

处理
Treatment
2020 2021
单位面积铃数
Boll density
(boll m-2)
单铃重
Boll weight
(g boll-1)
衣分
Lint
percentage
(%)
产量
Lint yield
(kg hm-2)
单位面积铃数
Boll density
(boll m-2)
单铃重
Boll weight
(g boll-1)
衣分
Lint
percentage
(%)
产量
Lint yield
(kg hm-2)
N0 53.54 c 5.63 b 40.25 a 1214.40 b 52.58 d 5.52 c 41.02 a 1191.42 c
N150 57.28 c 5.74 b 40.81 a 1342.14 b 58.53 d 5.78 b 40.31 a 1362.68 c
N180 74.73 b 5.82 ab 40.10 a 1743.68 a 64.65 c 5.88 b 40.03 a 1521.29 bc
N210 76.29 a 5.99 a 40.54 a 1853.62 a 77.04 a 5.96 a 40.78 a 1872.43 a
N240 74.68 b 5.83 ab 40.22 a 1751.14 a 72.69 b 5.90 ab 40.80 a 1743.96 ab
N270 72.23 b 5.83 ab 41.10 a 1731.42 a 70.85 b 5.93 a 40.37 a 1704.44 ab
N300 71.88 b 5.89 ab 40.57 a 1716.45 a 70.07 b 5.92 a 40.02 a 1659.54 ab

表4

施氮量对棉花氮肥利用效率的影响"

处理
Treatment
2020 2021
氮肥农学利用率
Nitrogen
agronomic efficiency
(kg kg-1)
氮肥偏生产力
Nitrogen partial factor productivity
(kg kg-1)
氮肥贡献率
Nitrogen
contribution rate
(%)
氮肥农学利用率
Nitrogen
agronomic efficiency
(kg kg-1)
氮肥偏生产力
Nitrogen partial factor productivity
(kg kg-1)
氮肥贡献率
Nitrogen
contribution rate
(%)
N150 0.85 d 7.46 c 9.52 b 1.14 b 9.08 a 12.57 b
N180 2.94 a 8.30 a 30.35 a 1.69 ab 8.31 a 20.37 ab
N210 3.04 ab 8.10 b 34.48 a 3.24 a 8.92 a 36.37 a
N240 2.24 bc 7.72 c 30.65 a 2.30 ab 7.27 b 31.68 a
N270 1.91 cd 6.49 c 29.86 a 1.90 ab 6.31 b 30.10 a
N300 1.67 cd 5.77 c 29.25 a 1.56 ab 5.53 b 28.21 a

图5

施氮量对土壤表观N平衡的影响 不同小写字母表示不同一年份同一处理间在0.05概率水平差异显著。处理同图2。"

[1] Jonas K, Matin Q. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc Natl Acad Sci USA, 2012, 109: 11652-11656.
doi: 10.1073/pnas.1203647109 pmid: 22753493
[2] Gui Y Y, Wei J J, Mao L Y, Li H B, Zhang R H, Zhou H, Yang R Z, Liu X H. Application of 15N stable isotope labeling technology in sugarcane nitrogen research. Agric Biotechnol, 2020, 9: 104-107.
[3] Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosy, 2002, 63: 117-127.
doi: 10.1023/A:1021107026067
[4] Wang S H, Mao L L, Shi J L, Nie J J, Song X L, Sun X Z. Effects of plant density and nitrogen rate on cotton yield and nitrogen use in cotton stubble retaining fields. J Integr Agric, 2021, 20: 2090-2099.
doi: 10.1016/S2095-3119(20)63323-8
[5] Zhang L, Mao L L, Yan X Y, Liu C M, Song X L, Sun X Z. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil. Ind Crops Prod, 2022, 177: 114472.
doi: 10.1016/j.indcrop.2021.114472
[6] Mo R X, Jiang L G, Guo L, Hu J M, Liu K Q, Zhou J M, Liang T F, Zeng K, Ding C Q. Effect of nitrogen application on contents of different forms of nitrogen in rice plants. Agric Sci Technol, 2011, 12: 1484-1489.
[7] 宋兴虎. 氮肥用量对夏直播棉花产量形成和养分利用的影响. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Song X H. Effect of Nitrogen Fertilizer Application on Yield Formation and Nutrient Utilization of Summer Direct Seeding Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract)
[8] Shang-Guan Z P, Shao M A, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot, 2000, 44: 141-149.
pmid: 10996367
[9] Cai R G, Zhang M, Yin Y Q, Wang P, Zhang T B, Gu F, Dai Z M, Liang T B, Wu Y H, Wang Z L. Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application during grain filling of field-grown wheat. Agric Sci China, 2008, 7: 157-167.
doi: 10.1016/S1671-2927(08)60035-8
[10] Li J P, Zhang Z, Yao C S, Liu Y, Wang Z M, Fang B T, Zhang Y H. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J Integr Agric, 2021, 20: 606-621.
doi: 10.1016/S2095-3119(20)63407-4
[11] Li J, Hu W S, Lu Z F, Meng F J, Cong R H, Li X K, Ren T, Lu J W. Imbalance between nitrogen and potassium fertilization influences potassium deficiency symptoms in winter oilseed rape (Brassica napus L.) leaves. Crop J, 2022, 10: 565-576.
doi: 10.1016/j.cj.2021.06.001
[12] Zhu K Y, Yan J Q, Shen Y, Zhang W Y, Xu Y J, Wang Z Q, Yang J C. Deciphering the morpho-physiological traits for high yield potential in nitrogen efficient varieties (NEVs): a japonica rice case study. J Integr Agric, 2022, 21: 947-963.
doi: 10.1016/S2095-3119(20)63600-0
[13] Wang R, An J W, Jie Z J, Hua L M, Liu Y. Effects of different nitrogen application methods on enzyme activities in leaves at late growth stage of spring maize. Agric Sci Technol, 2011, 12: 1605-1607.
[14] Zhang M, Pan G F, Huang Y Q, He J O, Fang X D, Liu Z H, Zhan M. Effects of increased planting density with reduced nitrogen application on yield formation and nitrogen utilization of autumn maize. Agric Sci Technol, 2019, 20: 1-13.
[15] Cui Z J, Yan B, Gao Y H, Wu B, Wang Y F, Wang H D, Xu P, Zhao B Q, Cao Z, Zhang Y, Xie Y P, Hu Y P, Ma X B, Niu J Y. Agronomic cultivation measures on productivity of oilseed flax: a review. Oil Crop Sci, 2022, 7: 53-62.
doi: 10.1016/j.ocsci.2022.02.006
[16] Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron, 2006, 24: 282-290.
doi: 10.1016/j.eja.2005.10.004
[17] Nie Y P, Chen H S, Wang K L, Ding Y L. Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of southwest China. Plant Ecol, 2014, 215: 1099-1109.
doi: 10.1007/s11258-014-0369-0
[18] Xue H Y, Han Y C, Li Y B, Wang G P, Feng L, Fan Z Y, Du W L, Yang B F, Cao C G, Mao S C. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Res, 2015, 184: 17-27.
doi: 10.1016/j.fcr.2015.09.004
[19] Yao H S, Zhang Y L, Yi X P, Hu Y Y, Luo H H, Gou L, Zhang W F. Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Res, 2015, 184: 39-49.
doi: 10.1016/j.fcr.2015.09.005
[20] Dordas C A, Sioulas C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res, 2009, 110: 35-43.
doi: 10.1016/j.fcr.2008.06.011
[21] Chen L, Qiao Z, Wang J J, Wang H G, Cao X N, Dong J L. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet. Agric Sci Technol, 2015, 16: 1425-1428.
[22] Ye J Q, Yuan R X, Wang Z H, Liu J S. Dynamic changes of nitrogenin saline-alkaline paddy field and its potential environmental impacts. Agric Sci Technol, 2011, 12: 443-446.
[23] Dai J J, Liu L Z, Wang X C, Fang Q N, Cheng Y R, Wang D N, Peng X L. Effects of carbon and nitrogen additions on soil microbial biomass carbon and enzyme activities under rice straw returning. J Northeast Agric Univ, 2021, 28: 21-30.
[24] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. pp 42-106.
Bao S D. Soil and Agro-chemistry Analysis. Beijing: China Agriculture Press, 2005. pp 42-106. (in Chinese)
[25] Sun C X, Qi H, Hao J J, Miao L, Wang J, Wang Y, Liu M, Chen L J. Single leaves photosynthetic characteristics of two insect-resistant transgenic cotton (Gossypium hirsutum L.) varieties in response to light. Photosynthetica, 2009, 47: 399-408.
doi: 10.1007/s11099-009-0061-0
[26] Nakaji T, Fukami M, Dokiya Y, Izuta T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 2001, 15: 453-461.
doi: 10.1007/s00468-001-0130-x
[27] Zhang J H, Liu J L, Zhang J B, Zhao F T, Cheng Y N, Wang W P. Effects of nitrogen application rates on translocation of dry matter and nitrogen uilization in rice and wheat. Acta Agron Sin, 2010, 36: 1736-1742.
doi: 10.1016/S1875-2780(09)60079-1
[28] Zhou G Y, Wang B, Xia H. Effects of density and nitrogen application rate on population structure and yield of early-maturing late japonica Tongjing 981. Agric Biotechnol, 2020, 9: 92-98.
[29] Peng J Y, Qu H P, Huang J S, Zhou L Q, Xie R L, Zhu X H, Zeng Y, Tan H W. Effects of different nitrogen levels on growth and nitrogen utilization of sugarcane. Asian Agric Res, 2022, 14: 26-29.
[30] Wang Q, Li F R, Zhao L, Zhang E H, Shi S L, Zhao W Z, Song W X, Vance M M. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil, 2010, 337: 325-339.
doi: 10.1007/s11104-010-0530-z
[31] Zhang Q X, Gao Y H, Yan B, Cui Z J, Wu B, Yang K, Ma J. Perspective on oil flax yield and dry biomass with reduced nitrogen supply. Oil Crop Sci, 2020, 5: 69-73.
[32] Niu X K, Xie R Z, Liu X, Zhang F L, Li S K, Gao S J. Maize yield gains in northeast China in the last six decades. J Integr Agric, 2013, 12: 630-637.
doi: 10.1016/S2095-3119(13)60281-6
[33] Lin E, Liu H G, Li X X, Li L, Sumera A. Promoting the production of salinized cotton field by optimizing water and nitrogen use efficiency under drip irrigation. J Arid Land, 2021, 13: 699-716.
doi: 10.1007/s40333-021-0012-6
[34] Liu Z L, Tao L Y, Liu T T, Zhang X H, Wang W, Song J M, Yu C L, Peng X L. Nitrogen application after low-temperature exposure alleviates tiller decrease in rice. Environ Exp Bot, 2018, 158: 205-214.
doi: 10.1016/j.envexpbot.2018.11.001
[35] Wen B B, Li C, Fu X L, Li D M, Li L, Chen X D, Wu H Y, Cui X W, Zhang X H, Shen H Y, Zhang W Q, Xiao W, Gao D S. Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiol Biochem, 2019, 142: 363-371.
doi: 10.1016/j.plaphy.2019.07.007
[36] Lin D X, Fan X H, Hu F, Zhao H T, Luo J F. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake Region, China. Pedosphere, 2007, 17: 639-645.
doi: 10.1016/S1002-0160(07)60076-9
[37] Sakariyawo O S, Oyeledun K O, Adeyemi N O, Atayese M O. Nitrogen use efficiency and performance of maize (Zea mays L.) cultivars as influenced by calcium carbide and inorganic nitrogen application rates in a derived savanna. J Plant Nutr, 2020, 43: 784-797.
doi: 10.1080/01904167.2020.1711947
[38] Neugschwandtner R W, Kaul H P. Nitrogen uptake, use and utilization efficiency by oat-pea intercrops. Field Crops Res, 2015, 179: 113-119.
doi: 10.1016/j.fcr.2015.04.018
[39] Shi Z L, Li D D, Jing Q, Cai J, Jiang D, Cao W X, Dai T B. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice-wheat rotation. Field Crops Res, 2012, 127: 241-247.
doi: 10.1016/j.fcr.2011.11.025
[40] Li Y, Chen Y, Wu C Y, Tang X, Ji X J. Determination of optimum nitrogen application rates in Zhejiang province, China, based on rice yields and ecological security. J Integr Agric, 2015, 14: 2426-2433.
doi: 10.1016/S2095-3119(15)61168-6
[41] Li P C, Dong H L, Liu A Z, Liu J R, Sun M, Li Y B, Liu S D, Zhao X H, Mao S C. Effects of nitrogen rate and split application ratio on nitrogen use and soil nitrogen balance in cotton fields. Pedosphere, 2017, 27: 769-777.
doi: 10.1016/S1002-0160(17)60303-5
[42] Qiao J, Yang L Z, Yan T M, Xue F, Zhao D. Rice dry matter and nitrogen accumulation, soil mineral N around root and N leaching, with increasing application rates of fertilizer. Eur J Agron, 2013, 49: 93-103.
doi: 10.1016/j.eja.2013.03.008
[1] 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350.
[2] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[3] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[4] 乐愉, 王涛, 张献龙, 林忠旭. 陆地棉重组自交系再生能力和遗传转化效率筛选[J]. 作物学报, 2024, 50(5): 1172-1180.
[5] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[6] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[7] 曹馨元, 杜明利, 王宇诚, 陈欣华, 陈佳欣, 凌霄霞, 黄见良, 彭少兵, 邓南燕. 稻油系统周年产量差及形成因素探究:以湖北省武穴市为例[J]. 作物学报, 2024, 50(5): 1287-1299.
[8] 陈玉章, 吴松果, 卢成霖, 李瑞, 龚利娟, 文悦, 宁佳欣, 吴宇涵. 条带垄覆对西南黄壤坡耕地径流和高粱水分利用的影响[J]. 作物学报, 2024, 50(5): 1325-1340.
[9] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[10] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[11] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[12] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[13] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[14] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[15] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .