欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1867-1876.doi: 10.3724/SP.J.1006.2024.33063

• 研究简报 • 上一篇    下一篇

叶绿体标记在玉米种质资源快速分组中的应用分析

王蕊1,**(), 孙擘1,2,**(), 张云龙1, 张茗起1, 范亚明1, 田红丽1, 赵怡锟1, 易红梅1, 匡猛2,*(), 王凤格1,*()   

  1. 1北京市农林科学院玉米研究所 / 农业农村部农作物DNA指纹创新利用重点实验室(部省共建) / 玉米DNA指纹及分子育种北京市重点实验室, 北京 100097
    2中国农业科学院棉花研究所 / 棉花生物学国家重点实验室, 河南安阳 455000
  • 收稿日期:2023-10-26 接受日期:2024-01-30 出版日期:2024-07-12 网络出版日期:2024-02-23
  • 通讯作者: *王凤格, E-mail: gege0106@163.com; 匡猛, E-mail: kuangmeng007@163.com
  • 作者简介:王蕊, E-mail: skywangr@126.com;
    孙擘, E-mail: sunbo990818@163.com

    **同等贡献

  • 基金资助:
    北京市农林科学院科技创新能力建设专项(KJCX20230301);北京市农林科学院科技创新能力建设专项(KJCX20230303);北京市农林科学院科研创新平台建设专项(PT2023-34)

Application analysis of chloroplast markers on rapid classification in maize germplasm

WANG Rui1,**(), SUN Bo1,2,**(), ZHANG Yun-Long1, ZHANG Ming-Qi1, FAN Ya-Ming1, TIAN Hong-Li1, ZHAO Yi-Kun1, YI Hong-Mei1, KUANG Meng2,*(), WANG Feng-Ge1,*()   

  1. 1Maize Research Institute, Beijing Academy of Agricultural and Forestry Sciences / Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
    2Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
  • Received:2023-10-26 Accepted:2024-01-30 Published:2024-07-12 Published online:2024-02-23
  • Contact: *E-mail: gege0106@163.com; E-mail: kuangmeng007@163.com
  • About author:

    **Contributed equally to this work

  • Supported by:
    Science and Technology Innovation Capacity Building Project of BAAFS(KJCX20230301);Science and Technology Innovation Capacity Building Project of BAAFS(KJCX20230303);Construction of Scientific Research and Innovation Platforms Special Project of BAAFS(PT2023-34)

摘要:

叶绿体标记具有遗传保守性高且不受核基因重组干扰等特点, 适于对玉米种质资源进行分类管理。本研究基于Maize6H-60K芯片对玉米叶绿体标记筛选获得叶绿体分组候选位点, 使用上述位点对3549份玉米种质资源进行聚类分析, 将玉米种质资源划分为B、D、H、C、T共5个类群。通过基因型信息对比筛选出29个叶绿体分组特异标记(Varietal Chloroplast Panel, VCP)并设计KASP引物。开发兼容芯片、KASP平台的快速分组分析算法, 算法结果与聚类分析一致。挑选5个类群特异位点利用序贯法对种质资源进行快速分组检测, 构建玉米种质资源快速分组方法, 减少了95%的检测量, 为玉米种质资源提供一种新型高效的分组管理方法。

关键词: 玉米, 种质资源, 叶绿体标记, KASP, 分组方案

Abstract:

The chloroplast marker has high genetic conservation and is not affected by nuclear gene recombination, making it suitable for the classification and management of maize germplasm resources. Based on the Maize6H-60K chip, candidate markers for chloroplast grouping were obtained and 3549 maize germplasm resources were classified into five groups: B, D, H, C, and T. Twenty-nine specific chloroplast group panels (VCP) were selected and KASP primers were designed by the comparison of genotype information. A rapid group analysis algorithm compatible with chip and KASP platform was developed, which was consistent with the cluster analysis. Five group-specific markers were selected using sequential analysis to rapidly detect the germplasm resources, and a new efficient method for rapid grouping of maize germplasm resources was established, reducing the detection volume by 95%. This method provides a new efficient way to classify and manage maize germplasm resources.

Key words: maize, germplasm resources, chloroplast marker, KASP, classification method

附表1

Maize6H-60K芯片上68个叶绿体位点信息"

序号Number 位点名称
Loci number
探针编号
Probe number
等位基因
Allele
在玉米品种B73叶绿体基因组上的位置
Location on the chloroplast genome of maize variety B73
1 CPMIDP02 AX-178078514 - // TCTTT 51,084
2 CPMIDP04 AX-178078490 - // ATGAACTTCTAATG 108,724
3 CPMIDP07 AX-178087616 - // G 33,742
4 CPMSNP01 AX-178078491 T // G 1337
5 CPMSNP02 AX-178078519 A // G 3358
6 CPMSNP05 AX-172772979 A // C 7431
7 CPMSNP07 AX-247287238 T // G 7533
8 CPMSNP09 AX-178078489 T // C 9640
9 CPMSNP10 AX-157921701 A // C 12,456
10 CPMSNP12 AX-157921697 T // C 12,988
11 CPMSNP15 AX-172772981 A // G 13,011
12 CPMSNP16 AX-178078506 A // G 14,852
13 CPMSNP17 AX-157921679 T // C 16,064
14 CPMSNP18 AX-178078503 T // G 16,124
15 CPMSNP19 AX-157921742 A // C 16,309
16 CPMSNP21 AX-247279512 A // C 18,618
17 CPMSNP22 AX-172773004 A // G 18,648
18 CPMSNP23 AX-157921748 T // G 19,299
19 CPMSNP24 AX-172773005 A // G 19,342
20 CPMSNP25 AX-178078507 T // C 19,363
21 CPMSNP26 AX-247233844 A // G 20,323
22 CPMSNP28 AX-157921674 T // G 20,665
23 CPMSNP29 AX-178078513 T // G 21,159
24 CPMSNP30 AX-157921751 A // G 29,999
25 CPMSNP31 AX-157921587 T // G 31,594
26 CPMSNP32 AX-178078509 T // G 31,631
27 CPMSNP33 AX-157921568 T // G 31,660
28 CPMSNP37 AX-157921692 T // C 32,830
29 CPMSNP38 AX-172773021 A // G 33,799
30 CPMSNP39 AX-172772993 A // C 34,124
31 CPMSNP41 AX-157921677 A // T 36,010
32 CPMSNP42 AX-172772994 A // T 36,558
33 CPMSNP44 AX-172773028 A // C 44,905
34 CPMSNP45 AX-157921694 T // G 45,987
35 CPMSNP47 AX-247285852 T // G 48,601
36 CPMSNP49 AX-157921576 T // G 49,550
37 CPMSNP50 AX-172773017 T // G 49,664
38 CPMSNP51 AX-172773018 T // G 49,715
39 CPMSNP52 AX-157921703 T // C 50,718
40 CPMSNP53 AX-172773019 A // G 50,781
41 CPMSNP54 AX-157921584 T // C 52,325
42 CPMSNP55 AX-172773020 A // G 52,460
43 CPMSNP57 AX-172772992 A // G 53,063
44 CPMSNP59 AX-172773002 A // G 56,142
45 CPMSNP62 AX-172773012 T // G 58,831
46 CPMSNP63 AX-172773013 T // G 59,519
47 CPMSNP64 AX-178078502 A // G 61,309
48 CPMSNP65 AX-157921725 A // G 61,560
49 CPMSNP67 AX-172772996 A // C 62,820
50 CPMSNP68 AX-172772997 T // C 64,621
51 CPMSNP70 AX-172772998 A // C 65,052
52 CPMSNP71 AX-172772999 A // C 66,406
53 CPMSNP72 AX-172773000 T // C 66,694
54 CPMSNP73 AX-172772986 T // C 66,832
55 CPMSNP78 AX-172773010 T // G 67,465
56 CPMSNP79 AX-157921686 T // G 69,515
57 CPMSNP80 AX-172773032 A // C 74,978
58 CPMSNP81 AX-172773014 A // G 77,910
59 CPMSNP84 AX-172773015 A // C 79,146
60 CPMSNP85 AX-172772976 T // G 80,107
61 CPMSNP86 AX-178078522 A // C 80,476
62 CPMSNP87 AX-172772977 A // T 105,654
63 CPMSNP88 AX-172772978 A // G 106,410
64 CPMSNP90 AX-178078518 T // G 107,436
65 CPMSNP91 AX-178078493 A // C 107,999
66 CPMSNP92 AX-178078504 T // C 108,597
67 CPMSNP94 AX-172773024 A // G 113,567
68 CPMSNP96 AX-157921671 A // G 115,907

图1

叶绿体分组候选位点筛选情况 a: 位点多态性且分型结果正确(候选); b: 分型结果正确但位点单态(剔除); c: 分型结果缺失(剔除); d: 分型结果散乱(剔除)。"

表1

叶绿体候选位点信息"

序号
No.
位点名称
Loci name
特异组别
VCP group
等位基因
Allele
特异等位基因
Specific allele
是否入选
Whether selected
1 CPMSNP02 B A / G A 是Yes
2 CPMSNP17 B T / C C 是Yes
3 CPMSNP30 B A / G A 是Yes
4 CPMSNP92 B T / C C 是Yes
5 CPMSNP07 D T / G T 是Yes
6 CPMSNP19 D A / C C 是Yes
7 CPMSNP09 H T / C T 是Yes
8 CPMSNP10 H A / C A 是Yes
9 CPMSNP31 H T / G G 是Yes
10 CPMSNP33 H T / G G 是Yes
11 CPMSNP37 H T / C T 是Yes
12 CPMSNP45 H T / G G 是Yes
13 CPMSNP49 H T / G G 是Yes
14 CPMSNP52 H T / C T 是Yes
15 CPMSNP65 H A / G A 是Yes
16 CPMSNP79 H T / G T 是Yes
17 CPMSNP96 H A / G G 是Yes
18 CPMSNP18 C T / G G 是Yes
19 CPMSNP38 C A / G A 是Yes
20 CPMSNP39 C A / C C 是Yes
21 CPMSNP44 C A / C C 是Yes
22 CPMSNP57 C A / G A 是Yes
23 CPMSNP72 C T / C C 是Yes
24 CPMSNP81 C A / G A 是Yes
25 CPMSNP29 T T / G T 是Yes
26 CPMSNP47 T T / G G 是Yes
27 CPMSNP67 T A / C C 是Yes
28 CPMSNP73 T T / C C 是Yes
29 CPMSNP86 T A / C C 是Yes
30 CPMSNP12 B, H T / C C 否No
31 CPMSNP54 D, T T / C C 否No
32 CPMSNP64 D, T A / G G 否No
33 CPMSNP91 D, T A / C C 否No
34 CPMSNP22 B-Zi 330 group A / G G 否No
35 CPMSNP41 B-1145 group A / T T 否No
36 CPMSNP62 B-Feng 062 group T / G T 否No
37 CPMSNP85 B- Feng 062 group T / G G 否No
38 CPMSNP80 Evenly distributed A / C / 否No

图2

玉米种质资源自交系的叶绿体分组候选标记聚类分析结果"

图3

玉米种质资源叶绿体分组特异位点筛选"

表2

玉米叶绿体分组特异位点及KASP引物信息"

序号
No.
特异位点编号
VCP number
位点名称
Loci name
上游引物1
Forward primer 1 (5'-3')
上游引物2
Forward primer 2 (5'-3')
下游通用引物
Reverse primer (5'-3')
1 VCPMB01 CPMSNP92 CTTGCAATAGGACTTACAACCTCC CTTGCAATAGGACTTACAACCTCT CCCATTTATATGGGAATTTTGGATAAGATT
2 VCPMB02 CPMSNP17 AAATTCATTCATTTCTTTTTTGAAAATGTCC CTAAATTCATTCATTTCTTTTTTGAAAATGTCT GGCATCTCGCACTAAACTAAGTCATAAA
3 VCPMB03 CPMSNP30 TAGGAAATCGCGAATTAGATCATTTGTTT GGAAATCGCGAATTAGATCATTTGTTC GCTCGTGCTTCTCTTGTTGAGGTAA
4 VCPMB04 CPMSNP02 AACAAACATAAACTAATTAGATAGAAAAGGAGT CAAACATAAACTAATTAGATAGAAAAGGAGC GAAAGAAAGGGAGTCTAATCCATAGAACTT
5 VCPMD01 CPMSNP19 AGTTGATGGTTAGGTTAATTCACGGAT GTTGATGGTTAGGTTAATTCACGGAG TAACCTTAAAAAGCTTAAAAAGTAGGGGAT
6 VCPMD02 CPMSNP07 GCAGGGGGTAGAAAGGCTGATA CAGGGGGTAGAAAGGCTGATC CTACATTGAATGTATAGCTGCAGCAATAAA
7 VCPMH01 CPMSNP45 AAGCGCGGGTTTCCTTTACTAATTTT AGCGCGGGTTTCCTTTACTAATTTG AGAGAGAGGGTTCGCATAGAGAGAA
8 VCPMH02 CPMSNP10 ATATTTTATAGGGTATATCCACCTGG CCTATATTTTATAGGGTATATCCACCTGT ACATAGACGGTCGACCCAGACATA
9 VCPMH03 CPMSNP49 AGTGAATCTTAAACCCATTGATAAAAGA AGTGAATCTTAAACCCATTGATAAAAGC TTTATTCCCTAACCATAGTTGTTATCCTTT
10 VCPMH04 CPMSNP96 AAAAGATCCTATTTTAACGAATCACACGTA AGATCCTATTTTAACGAATCACACGTG TACCATTAACTTTTTGTGTACTAGCAATAT
11 VCPMH05 CPMSNP79 GTATTTCTATTTTCTATAGCATAAAACCCG AAGTATTTCTATTTTCTATAGCATAAAACCCT GGATTTCTTGTAAATTTATCTCAAACCTAA
12 VCPMH06 CPMSNP33 ACTGACTTCTTTTACTTATTAAAATACAATTTA ACTGACTTCTTTTACTTATTAAAATACAATTTC CTAACAGGTCTGATTTTCGATTTTGTACTT
13 VCPMH07 CPMSNP65 CGATTTCTGTATCGATCATGATATACG ATCGATTTCTGTATCGATCATGATATACA GATATGCGTTTGAAATAGATGTGCGAGTT
14 VCPMH08 CPMSNP52 CCAAAAGGATAATCCTAGAATCCCG CCCAAAAGGATAATCCTAGAATCCCA ATCGGCACTTCTCCAAACCCAGAAA
15 VCPMH09 CPMSNP37 CAATTTTTATCAGAGGACAATATGAATATTAC CAATTTTTATCAGAGGACAATATGAATATTAT TATAACCCCTTGAGTGTTTTAATGGAACAT
16 VCPMH10 CPMSNP09 TCAACGTCCAATTATGAAATCCTTGG GTTCAACGTCCAATTATGAAATCCTTGA GTAGCAGCTATATTTCGGTTCATCCTTT
17 VCPMH11 CPMSNP31 TTAAGTATACATAAAGCAATTTTTTTTACTTT TAAGTATACATAAAGCAATTTTTTTTACTTG GTTAGCATTCTAAGGTCAAAAGTATAGTTT
18 VCPMC01 CPMSNP81 AGGCGTGGGCGAATTAGAGTC CAGGCGTGGGCGAATTAGAGTT GTCTTTGTTTATGCTTCGGATTGGAACAA
19 VCPMC02 CPMSNP18 GTGCTCGTTTAGTGTTCAGACCA GTGCTCGTTTAGTGTTCAGACCC CTTAGTTTAGTGCGAGATGCCCACAT
20 VCPMC03 CPMSNP57 TATTTAGTACTTGTTTATAGACTCGAC CCTTATTTAGTACTTGTTTATAGACTCGAT AATGCTTTTATCTCTATTCTATGGCGCAAT
21 VCPMC04 CPMSNP44 GCCTATACTACTATTCTATGGATAAAGCT CCTATACTACTATTCTATGGATAAAGCG TCGCTCACTAATTGATCTTTACGGTGTTT
22 VCPMC05 CPMSNP38 ATTCTAAAATCATTCTTTAGAAAGCCACAC CTAAAATCATTCTTTAGAAAGCCACAT GGCCAAGTCAGGTTAGATCTATATCTTTA
23 VCPMC06 CPMSNP72 TCATATACTAAAAAAGAATTCAAAAAGGGGA CATATACTAAAAAAGAATTCAAAAAGGGGG GAGATAGAATTCTTCGTGACATGACGAAA
24 VCPMC07 CPMSNP39 ATGGGAACTCAAAGATATCGAAGAGTA GGGAACTCAAAGATATCGAAGAGTC CAACCAATCACTCTTTTATTCCATCCTTTT
25 VCPMT01 CPMSNP29 ATATTCTAAAAAGATTGGATAGCAAAGATTTC GATATTCTAAAAAGATTGGATAGCAAAGATTTA GCTTTATCCCGTTTCATAGAAAGGAGATA
26 VCPMT02 CPMSNP73 ATTTCAAAAATTTTGTATTCTATTGGATTGGAT TCAAAAATTTTGTATTCTATTGGATTGGAC TTTGTTGTAATTCTTCGAATTCTCGAACAA
27 VCPMT03 CPMSNP67 AGTTGAACTTAATTCAAAAAGTAAAGCAATTCT GTTGAACTTAATTCAAAAAGTAAAGCAATTCG CGGGGACACATTTCTTGTGAGCAAA
28 VCPMT04 CPMSNP47 GAACTATTTATCCTTAAATTATTAACAAATAA GAACTATTTATCCTTAAATTATTAACAAATAC GCCAAGAGATTGGCATTTTCATTTGATCAT
29 VCPMT05 CPMSNP86 TTGAATCCTGCAATGGAGCTTCCA GAATCCTGCAATGGAGCTTCCC GCAGCCGGGTTAATAAAACTGAGAAAATT

图4

叶绿体分组特异标记KASP分型图 蓝色点表示FAM荧光标记等位基因, 红色点表示HEX荧光标记等位基因, 黑色点表示空白对照。"

表3

VCP 分组算法分析示意表"

特异位点编号
VCP number
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8
VCPMB01 T T T T F F F F
VCPMB02 T T F T F F F F
VCPMB03 T T T T F F F F
VCPMB04 T N T T F F F F
VCPMD01 F F F F T F F F
VCPMD02 F F F F T F F F
VCPMH01 F F F F F T F F
VCPMH02 F F F F F T F F
VCPMH03 F F F F F T F F
VCPMH04 F F F F F T F F
VCPMH05 F F F F F T F F
VCPMH06 F F F F F T F F
VCPMH07 F F F F F T F F
VCPMH08 F F F F F T F F
VCPMH09 F F F F F T F F
VCPMH10 F F F F F T F F
VCPMH11 F F F T F T F F
VCPMC01 F F F F F F T F
VCPMC02 F F F F F F T F
VCPMC03 F F F F F F T F
VCPMC04 F F F F F F T F
VCPMC05 F F F F F F T F
VCPMC06 F F F F F F T F
VCPMC07 F F F F F F T F
VCPMT01 F F F F F F F T
VCPMT02 F F F F F F F T
VCPMT03 F F F F F F F T
VCPMT04 F F F F F F F T
VCPMT05 F F F F F F F T
分组结果判定
Group results
B group
B group
B group
B group
D group
H group
C group
T group

表4

玉米叶绿体分组特异位点分组情况统计"

特异引物
编号
VCP number
特异组别VCP group 特异组别
基因型
Specific group
genotype
特异组别分型情况
Specific group classification (%)
非特异组别分型情况
Non-specific group classification (%)
特异组别
基因型比例
Specific group genotype
proportions
非特异组别
基因型比例
Non-specific group genotype
proportions
缺失率
Missing rate
特异组别基
因型比例
Specific group genotype
proportions
非特异组别
基因型比例
Non-specific group genotype proportions
缺失率
Missing rate
VCPMB01 B BB 99.97 0 0.03 99.66 0 0
VCPMB02 B BB 99.80 0 0.20 99.66 0 0.34
VCPMB03 B AA 99.70 0.07 0.24 100.00 0 0
VCPMB04 B AA 98.08 0.24 1.69 99.32 0.17 0.51
VCPMD01 D AA 99.73 0 0.27 99.97 0 0.03
VCPMD02 D BB 98.37 0.81 0.81 99.97 0 0.03
VCPMH01 H AA 100.00 0 0 100.00 0 0
VCPMH02 H BB 100.00 0 0 99.91 0 0.09
VCPMH03 H AA 100.00 0 0 99.79 0 0.21
VCPMH04 H AA 100.00 0 0 99.46 0.18 0.36
VCPMH05 H BB 99.49 0 0.51 99.88 0 0.12
VCPMH06 H AA 99.49 0 0.51 99.70 0.12 0.18
VCPMH07 H BB 98.48 0.51 1.02 99.76 0 0.24
VCPMH08 H BB 97.97 0 2.03 99.91 0.09 0
VCPMH09 H BB 96.95 0 3.05 99.88 0 0.12
VCPMH10 H BB 95.43 1.02 3.55 99.76 0 0.24
VCPMH11 H AA 95.43 1.02 3.55 97.76 0.78 1.46
VCPMC01 C BB 100.00 0 0 99.94 0 0.06
VCPMC02 C AA 100.00 0 0 99.92 0 0.08
VCPMC03 C BB 93.75 0 6.25 99.92 0 0.08
VCPMC04 C AA 93.75 6.25 0 99.89 0 0.11
VCPMC05 C BB 93.75 0 6.25 99.86 0 0.14
VCPMC06 C AA 93.75 0 6.25 99.83 0 0.17
VCPMC07 C AA 75.00 0 25.00 99.75 0 0.25
VCPMT01 T BB 100.00 0 0 99.89 0 0.11
VCPMT02 T AA 100.00 0 0 99.83 0 0.17
VCPMT03 T AA 100.00 0 0 99.72 0 0.28
VCPMT04 T AA 100.00 0 0 99.72 0 0.28
VCPMT05 T AA 100.00 0 0 99.72 0.11 0.17

图5

VCP 分组方案流程图"

[1] 赵久然, 王帅, 李明, 吕慧颖, 王道文, 葛毅强, 魏珣, 杨维才. 玉米育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 435-44.
doi: 10.13430/j.cnki.jpgr.2018.03.008
Zhao J R, Wang S, Li M, Lyu H Y, Wang D W, Ge Y Q, Wei X, Yang W C. Current status and perspective of maize breeding. J Plant Genet Res, 2018, 19: 435-446 (in Chinese with English abstract).
[2] Prasanna B M. Diversity in global maize germplasm: characterization and utilization. J Biosci, 2012, 37: 843-855.
[3] 郝奇慧. 玉米种子理化性状与种子活力的关系研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018.
Hao Q H. Study on the Relationship between Seed Physicochemical Properties and Seed Vigor in Maize. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract).
[4] 陆大雷, 郭换粉, 董策, 陆卫平. 普通、甜、糯玉米果穗不同部位籽粒淀粉理化特性和颗粒分布差异. 作物学报, 2011, 37: 331-338.
doi: 10.3724/SP.J.1006.2011.00331
Lu D L, Guo H F, Dong C, Lu W P. Starch physicochemical characteristics and granule size distribution at apical, middle and basal ear positions in normal, sweet, and waxy maize. Acta Agron Sin, 2011, 37: 331-338 (in Chinese with English abstract).
[5] 陈伟, 刘占先, 鄂立柱, 杨会, 戴景瑞. 玉米细胞质雄性不育材料CMS-P的胞质分类研究. 作物学报, 2007, 33: 196-200.
Chen W, Liu Z X, E L Z, Yang H, Dai J R. Classification of Male Sterile Cytoplasm of CMS-P in maize (Zea mays everta). Acta Agron Sin, 2007, 33: 196-200 (in Chinese with English abstract).
[6] 荣广天. 密花豆种质资源ISSR分析. 中南林业科技大学硕士学位论文, 湖南长沙, 2016.
Rong G T. SSR Analysis on the Diversity of Spatholobus suberectus Germplasms. MS Thesis of Central South University of Forestry and Technology, Changsha, Hunan, China, 2016 (in Chinese with English abstract).
[7] 王晓阳, 高飞, 周宜君. 基于叶绿体基因组对蒺藜科植物的系统进化研究. 分子植物育种, 2023, URL: https://link.cnki.net/urlid/46.1068.S.20230923.0713.008.html.
Wang X Y, Gao F, Zhou Y J. Study on Zygophyllaceae phylogeny based on plastid genomes. Mol Plant Breed, 2023, URL: https://link.cnki.net/urlid/46.1068.S.20230923.0713.008.html. (in Chinese with English abstract).
[8] 靳媛茜, 王钰双, 高永巍, 周立威, 汪奕衡, 袁庆军, 董文攀. 中药女贞子的叶绿体基因组及高变分子标记开发. 中国中药杂志, 2022, 47: 1847-1856.
Jin Y X, Wang Y S, Gao Y W, Zhou L W, Wang Y H, Yuan Q J, Dong W P. Complete chloroplast genome of Ligustrum lucidum and highly variable marker identification for Ligustrum. Chin J Chin Mater Med, 2022, 47: 1847-1856 (in Chinese with English abstract).
[9] 宋芸, 张鑫瑞, 贺嘉欣, 李政, 孙哲, 李澳旋, 乔永刚. 基于叶绿体SSR分子标记的苦参种质资源遗传多样性分析. 作物杂志, 2023, (1): 30-37.
Song Y, Zhang X R, He J X, Li Z, Sun Z, Li A X, Qiao Y G. Analysis of genetic diversity of Sophora flavescens Ait. based on chloroplast simple sequence repeat. Crops, 2023, (1): 30-37 (in Chinese with English abstract).
[10] 孙嘉苓, 韩岩, 崔秀明, 刘源. 三七叶绿体分子标记的开发与应用研究. 中国中药杂志, 2020, 45: 1342-1349.
Sun J L, Han Y, Cui X M, Liu Y. Development and application of chloroplast molecular markers in Panax notoginseng. Chin J Chin Mater Med, 2020, 45: 1342-1349 (in Chinese with English abstract).
[11] 刘岩, 程须珍, 王丽侠, 王素华, 白鹏. 基于叶绿体DNA序列的Ceratotropis亚属遗传进化研究. 作物学报, 2013, 39: 979-991.
doi: 10.3724/SP.J.1006.2013.00979
Liu Y, Cheng X Z, Wang L X, Wang S H, Bai P. Genetic evolution for Vigna subgenus Ceratotropis based on chloroplast DNA sequences. Acta Agron Sin, 2013, 39: 979-991 (in Chinese with English abstract).
[12] 豆丹丹, 孙建军, 郭玉玺, 王德新, 郭新海, 丁超明. 基于DUS测试性状的黄淮海地区玉米自交系的遗传多样性及群体结构分析. 河南农业科学, 2023, 52(5): 24-32.
Dou D D, Sun J J, Guo Y X, Wang D X, Guo X H, Ding C M. Genetic diversity and population structure analyses of maize inbred lines based on DUS test traits in Huang-Huai-Hai region. J Henan Agric Sci, 2023, 52(5): 24-32 (in Chinese with English abstract).
[13] Tian H L, Yang Y, Yi H M, Xu L W, He H, Fan Y M, Wang L, Ge J R, Liu Y W, Wang F G, Zhao J R. New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application. Plant J, 2021, 105: 1113-1122.
[14] 田红丽, 赵紫薇, 杨扬, 范亚明, 班秀丽, 易红梅, 杨洪明, 刘少荣, 高玉倩, 刘亚维, 王凤格. 290个吉林省审定玉米品种SSR-DNA指纹构建及遗传多样性分析. 作物学报, 2022, 48: 2994-3003.
doi: 10.3724/SP.J.1006.2022.13076
Tian H L, Zhao Z W, Yang Y, Fan Y M, Ban X L, Yi H M, Yang H M, Liu S R, Gao Y Q, Liu Y W, Wang F G. Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin province, China. Acta Agron Sin, 2022, 48: 2994-3003 (in Chinese with English abstract).
[15] Zhao Y K, Tian H L, Li C H, Yi H M, Zhang Y L, Li X H, Zhao H, Huo Y X, Wang R, Kang D M, Lu Y C, Liu Z H, Liang Z Y, Xu L W, Yang Y, Zhou L, Wang T Y, Zhao J R, Wang F G. HTPdb and HTPtools: exploiting maize haplotype-tag polymorphisms for germplasm resource analyses and genomics-informed breeding. Plant Commun, 2022, 3: 100331.
[16] 陆海燕, 周玲, 林峰, 王蕊, 王凤格, 赵涵. 基于高通量测序开发玉米高效KASP分子标记. 作物学报, 2019, 45: 872-878.
doi: 10.3724/SP.J.1006.2019.83067
Lu H Y, Zhou L, Lin F, Wang R, Wang F G, Zhao H. Development of efficient KASP molecular markers based on high throughput sequencing in maize. Acta Agron Sin, 2019, 45: 872-878 (in Chinese with English abstract).
[17] 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法. 生物技术通报, 2023, 39(6): 133-140.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1191
Zhu S X, Jin Z Y, Ge J R, Wang R, Wang F G, Lu Y C. High-throughput specific detection methods for transgenic maize based on the KASP platform. Biotechnol Bull, 2023, 39(6): 133-140 (in Chinese with English abstract).
[18] 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 赵久然, 王凤格. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立. 作物学报, 2021, 47: 770-779.
doi: 10.3724/SP.J.1006.2021.03031
Wang R, Shi L J, Tian H L, Yi H M, Yang Y, Ge J R, Fan Y M, Ren J, Wang L, Lu D L, Zhao J R, Wang F G. Identification of SNP core primer and establishment of high throughput detection scheme for purity identification in maize hybrids. Acta Agron Sin, 2021, 47: 770-779 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.03031
[19] 刘志浩. 利用InDel标记进行玉米纯度及亲子鉴定. 黑龙江大学硕士学位论文, 黑龙江哈尔滨, 2022.
Liu Z H. InDel Molecular Markers for Maize Purity and Paternity Test. MS Thesis of Heilongjiang University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract).
[20] 徐雷, 刘常丽, 郭兰萍. 不同种植模式下茯苓土壤细菌多样性和功能预测分析. 北方园艺, 2023, (11): 91-97.
Xu L, Liu C L, Guo L P. Prediction analysis of soil bacterial diversity and function of Poria cocos under different planting modes. North Hortic, 2023, (11): 91-97 (in Chinese with English abstract).
[1] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10/ZmCCT9/ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[2] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[3] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[4] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[5] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[6] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[7] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[8] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[9] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[10] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[11] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[12] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[13] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[14] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[15] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[8] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[9] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[10] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121 -1127 .