作物学报 ›› 2025, Vol. 51 ›› Issue (1): 58-67.doi: 10.3724/SP.J.1006.2025.44092
MENG Fan-Hua1, LIU Min1(), SHEN Ao1,2, LIU Wei1,*(
)
摘要:
土壤盐渍化严重制约农业生产发展, 通过提高植物耐盐性进行盐碱地综合利用, 对于保障粮食安全, 提升农业生产效率具有重要意义。脂质转移蛋白是一类在高等植物中广泛存在的小分子蛋白质, 能够参与植株生长、信号转导以及多种生物和非生物胁迫过程。前期本课题组克隆到一个谷子中编码脂质转移蛋白的基因SiLTP1, 本研究通过构建其原核表达载体和植物双元过表达载体, 获得了该基因的原核表达蛋白及同源转化过表达阳性植株, 经进一步筛选获得4个纯合株系。体外耐盐性试验显示, SiLTP1的原核表达蛋白具有一定耐盐性; 转基因植株苗期耐盐生理指标测定显示, SiLTP1过表达植株在遭受盐胁迫时, 植株体内MDA积累减少, 抗氧化酶含量升高, 可积累更少的过氧化氢, 从而降低胁迫对植株的氧化损伤, 显示基因过表达植株具有更好的耐盐性。本研究结果初步揭示, SiLTP1可正向调控谷子的耐盐性, 其在谷子耐盐抗逆方面具有潜在功能, 为耐盐谷子品种改良及新品种培育提供了理论基础和候选基因资源。
[1] | Zhou H P, Shi H F, Yang Y Q, Feng X X, Chen X, Xiao F, Lin H H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics, 2024, 51: 16-34. |
[2] | Xiao F, Zhou H P. Plant salt response: perception, signaling, and tolerance. Front Plant Sci, 2023, 13: 1053699. |
[3] | Atta K, Mondal S, Gorai S, Singh A P, Kumari A, Ghosh T, Roy A, Hembram S, Gaikwad D J, Mondal S, Bhattacharya S, Jha U C, Jespersen D. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Front Plant Sci, 2023, 14: 1241736. |
[4] | Kader J C. Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci, 1997, 2: 66-70. |
[5] | Kader J C, Julienne M, Vergnolle C. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem, 1984, 139: 411-416. |
[6] | Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat J. Plant non-specific lipid transfer proteins: an overview. Plant Physiol Biochem, 2022, 171: 115-127. |
[7] | Salminen T A, Blomqvist K, Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. Planta, 2016, 244: 971-997. |
[8] | Liu F, Zhang X B, Lu C M, Zeng X H, Li Y J, Fu D H, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66: 5663-5681. |
[9] | Fang C W, Wu S W, Li Z W, Pan S S, Wu Y R, An X L, Long Y, Wei X, Wan X Y. A systematic investigation of lipid transfer proteins involved in male fertility and other biological processes in maize. Int J Mol Sci, 2023, 24: 1660. |
[10] | Hairat S, Baranwal V K, Khurana P. Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles. Plant Physiol Biochem, 2018, 130: 418-430. |
[11] | Missaoui K, Ghorbel M, Jrad O, Masmoudi K, Brini F. The wheat lipid transfer protein (TdLTP2) mitigates biotic and abiotic stress damages in transgenic Arabidopsis thaliana plants. Physiol Mol Plant Pathol, 2023, 127: 102096. |
[12] | Pitzschke A, Datta S, Persak H. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol Plant, 2014, 7: 722-738. |
[13] | Yang Y X, Song H, Yao P P, Zhang S T, Jia H F, Ye X F. NtLTPI.38, a plasma membrane-localized protein, mediates lipid metabolism and salt tolerance in Nicotiana tabacum. Int J Biol Macromol, 2023, 242: 125007. |
[14] | 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55: 653-665. |
Jia G Q, Diao X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Sci Agric Sin, 2022, 55: 653-665 (in Chinese with English abstract). | |
[15] | Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549-554. |
[16] | 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29: 292-301. |
Jia G Q, Diao X M. Current status and perspectives of researches on foxtail millet (Setaria italica (L.) P. Beauv.): a potential model of plant functional genomics studies. Chin Bull Life Sci, 2017, 29: 292-301 (in Chinese with English abstract). | |
[17] | Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178. |
[18] | 娄燕宏, 丁汉凤, 诸葛玉平, 王会, 陈青, 赵鹏, 王德领, 孙鑫. 山东省谷子产业化发展的制约因素及对策研究. 中国农业信息, 2016, (12): 31-33. |
Lou Y H, Ding H F, Zhuge Y P, Wang H, Chen Q, Zhao P, Wang D L, Sun X. Study on restrictive factors and countermeasures of millet industrialization development in Shandong province. China Agric Inf, 2016, (12): 31-33 (in Chinese). | |
[19] | Wang M Z, Li P, Li C, Pan Y L, Jiang X Y, Zhu D Y, Zhao Q, Yu J J. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol, 2014, 14: 290. |
[20] | Li C, Yue J, Wu X W, Xu C, Yu J J. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot, 2014, 65: 5415-5427. |
[21] | Li J R, Dong Y, Li C, Pan Y L, Yu J J. SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci, 2017, 7: 2053. |
[22] | Pan Y L, Li J R, Jiao L C, Li C, Zhu D Y, Yu J J. A non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress. Front Plant Sci, 2016, 7: 1752. |
[23] | 孟凡花, 李臻, 王庆国, 刘炜. 谷子脂质转移蛋白基因SiLTP1的克隆及表达分析. 山东农业科学, 2021, 53(10): 1-7. |
Meng F H, Li Z, Wang Q G, Liu W. Cloning and expression analysis of lipid transfer protein gene SiLTP1 of foxtail millet. Shandong Agric Sci, 2021, 53(10): 1-7 (in Chinese with English abstract). | |
[24] | Kumar D, Yusuf M A, Singh P, Sardar M, Sarin N B. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma, 2013, 250: 1079-1089. |
[25] | Huang L, Wu D Z, Zhang G P. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ Sci B, 2020, 21: 426-441. |
[26] | Wang M, Wang M, Zhao M, Wang M C, Liu S P, Tian Y C, Moon B, Liang C C, Li C L, Shi W M, Bai M Y, Liu S W, Zhang W, Hwang I, Xia G M. TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance. New Phytol, 2022, 236: 495-511. |
[27] | Xiang Y H, Yu J J, Liao B, Shan J X, Ye W W, Dong N Q, Guo T, Kan Y, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Lin H X. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Mol Plant, 2022, 15: 1908-1930. |
[28] | Zhang M, Cao Y B, Wang Z P, Wang Z Q, Shi J P, Liang X Y, Song W B, Chen Q J, Lai J S, Jiang C F. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol, 2018, 217: 1161-1176. |
[29] | Zhang H L, Yu F F, Xie P, Sun S Y, Qiao X H, Tang S Y, Chen C X, Yang S, Mei C, Yang D K, Wu Y R, Xia R, Li X, Lu J, Liu Y X, Xie X W, Ma D M, Xu X, Liang Z W, Feng Z H, Huang X H, Yu H, Liu G F, Wang Y C, Li J Y, Zhang Q F, Chen C, Ou-Yang Y D, Xie Q. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379: eade8416. |
[30] | Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S. A novel diligent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012, 31: 1801-1812. |
[31] | 杨玉婷, 李国印, 苏亚春, 郭晋隆, 许莉萍. 正响应盐胁迫的甘蔗6-磷酸葡萄糖脱氢酶基因的克隆. 福建农林大学学报(自然科学版), 2014, 43(2): 156-164. |
Yang Y T, Li G Y, Su Y C, Guo J L, Xu L P. Cloning and characterization of sugarcane 6-phosphogluconate dehydrogenase gene, positive response to salt stress. J Fujian Agric For Univ (Nat Sci Edn), 2014, 43(2): 156-164 (in Chinese with English abstract). | |
[32] | Murphy M P, Bayir H, Belousov V, Chang C J, Davies K J A, Davies M J, Dick T P, Finkel T, Forman H J, Janssen-Heininger Y, Gems D, Kagan V E, Kalyanaraman B, Larsson N G, Milne G L, Nyström T, Poulsen H E, Radi R, Van Remmen H, Schumacker P T, Thornalley P J, Toyokuni S, Winterbourn C C, Yin H Y, Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab, 2022, 4: 651-662. |
[33] | 张梦如, 杨玉梅, 成蕴秀, 周滔, 段晓艳, 龚明, 邹竹荣. 植物活性氧的产生及其作用和危害. 西北植物学报, 2014, 34: 1916-1926. |
Zhang M R, Yang Y M, Cheng Y X, Zhou T, Duan X Y, Gong M, Zou Z R. Generation of reactive oxygen species and their functions and deleterious effects in plants. Acta Bot Boreali-Occident Sin, 2014, 34: 1916-1926 (in Chinese with English abstract). | |
[34] | Tyagi S, Shumayla, Sharma Y, Madhu, Sharma A, Pandey A, Singh K, Upadhyay S K. TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis. Plant Sci, 2023, 337: 111881. |
[35] | Gao W D, Liu B C, Phetmany S, Li J H, Wang D N, Liu Z Y, Gao C Q. ThDIV2, an R-R-type MYB transcription factor of Tamarix hispida, negatively regulates cadmium stress by modulating ROS homeostasis. Environ Exp Bot, 2023, 214: 105453. |
[1] | 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160. |
[2] | 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218. |
[3] | 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761. |
[4] | 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727. |
[5] | 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607. |
[6] | 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434. |
[7] | 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708. |
[8] | 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746. |
[9] | 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279. |
[10] | 阳世杰, 王华智, 潘怡敏, 黄蕊, 侯森, 秦慧彬, 穆志新, 王海岗. 山西谷子种质资源株高全基因组关联分析[J]. 作物学报, 2024, 50(12): 2984-2997. |
[11] | 张锦辉, 肖姿仪, 李旭华, 张明, 贾春兰, 潘振远, 邱法展. 玉米突变体caspl2b2的耐盐特性评价及转录组分析[J]. 作物学报, 2024, 50(12): 3144-3154. |
[12] | 薛亚鹏, 辛旭霞, 王若楠, 于筱菡, 刘少雄, 王瑞云, 刘敏轩. 国内外谷子资源农艺、品质性状差异分析以及遗传多样性研究[J]. 作物学报, 2024, 50(10): 2468-2482. |
[13] | 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236. |
[14] | 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250. |
[15] | 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137. |
|