欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 58-67.doi: 10.3724/SP.J.1006.2025.44092

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探

孟凡花1, 刘敏1(), 沈傲1,2, 刘炜1,*()   

  1. 1山东省农业科学院农作物种质资源研究所, 山东济南 250100
    2上海应用技术大学生态技术与工程学院, 上海 201418
  • 收稿日期:2024-06-06 接受日期:2024-09-18 出版日期:2025-01-12 网络出版日期:2024-10-10
  • 通讯作者: *刘炜, E-mail: wheiliu@163.com
  • 作者简介:刘敏, E-mail: liumin20210101@163.com
    **同等贡献
  • 基金资助:
    山东省农业良种工程项目(2021LZGC006);山东省重点研发计划项目(2021LZGC025);国家自然科学基金项目(32201736);国家自然科学基金项目(32171955);山东省农业科学院农业科技创新工程项目(CXGC2023F13)

Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet

MENG Fan-Hua1, LIU Min1(), SHEN Ao1,2, LIU Wei1,*()   

  1. 1Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2024-06-06 Accepted:2024-09-18 Published:2025-01-12 Published online:2024-10-10
  • Contact: *E-mail: wheiliu@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    Agricultural Fine Seed Project of Shandong Province(2021LZGC006);Key Research and Development Project of Shandong Province(2021LZGC025);National Natural Science Foundation of China(32201736);National Natural Science Foundation of China(32171955);Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2023F13)

摘要:

土壤盐渍化严重制约农业生产发展, 通过提高植物耐盐性进行盐碱地综合利用, 对于保障粮食安全, 提升农业生产效率具有重要意义。脂质转移蛋白是一类在高等植物中广泛存在的小分子蛋白质, 能够参与植株生长、信号转导以及多种生物和非生物胁迫过程。前期本课题组克隆到一个谷子中编码脂质转移蛋白的基因SiLTP1, 本研究通过构建其原核表达载体和植物双元过表达载体, 获得了该基因的原核表达蛋白及同源转化过表达阳性植株, 经进一步筛选获得4个纯合株系。体外耐盐性试验显示, SiLTP1的原核表达蛋白具有一定耐盐性; 转基因植株苗期耐盐生理指标测定显示, SiLTP1过表达植株在遭受盐胁迫时, 植株体内MDA积累减少, 抗氧化酶含量升高, 可积累更少的过氧化氢, 从而降低胁迫对植株的氧化损伤, 显示基因过表达植株具有更好的耐盐性。本研究结果初步揭示, SiLTP1可正向调控谷子的耐盐性, 其在谷子耐盐抗逆方面具有潜在功能, 为耐盐谷子品种改良及新品种培育提供了理论基础和候选基因资源。

关键词: 脂质转移蛋白, SiLTP1, 盐胁迫, 谷子, 耐盐响应

Abstract:

Soil salinization poses a significant barrier to agricultural productivity. Enhancing the salt tolerance of crops is crucial for the effective utilization of saline-alkali land, thereby ensuring food security and improving agricultural efficiency. Lipid transfer proteins (LTPs) are a class of small, widely distributed proteins in higher plants, playing crucial roles in plant growth, signal transduction, and responses to various biotic and abiotic stresses. In a previous study, a lipid transfer protein gene, designated SiLTP1, was cloned from foxtail millet. In this study, we constructed both a prokaryotic expression vector and a plant binary overexpression vector for SiLTP1. The prokaryotically expressed protein and four homozygous transgenic lines were successfully obtained and characterized. In vitro salt tolerance assays revealed that the SiLTP1 protein exhibited a notable degree of salt tolerance. Physiological measurements of the transgenic seedlings indicated reduced oxidative damage, as evidenced by lower malondialdehyde (MDA) accumulation, increased superoxide dismutase (SOD) activity, and reduced hydrogen peroxide (H2O2) levels under salt stress, demonstrating enhanced salt tolerance. These findings suggest that SiLTP1 plays a positive role in regulating salt tolerance in foxtail millet, potentially by mitigating oxidative stress. This study provides a theoretical foundation and valuable genetic resources for the future development and breeding of salt-tolerant foxtail millet varieties.

Key words: lipid transfer proteins, SiLTP1, salt stress, foxtail millet, salt tolerance response

图1

SiLTP1基因的原核蛋白表达 A: 菌液PCR验证; M: DNA marker; 1~6: pET32a-SiLTP1阳性菌液。B: SDS-PAGE电泳; M: protein maker; 1~4: pET32a- SiLTP1分别经0.05 mmol L-1、0.20 mmol L-1、0.50 mmol L-1和1.00 mmol L-1 IPTG诱导5 h表达的总蛋白; 5~6: pET32a空载体表达的总蛋白; 7: 未经载体转化的植株总蛋白。图中32 kD条带为pET32a-SiLTP1表达的融合蛋白, 21 kD条带为载体表达的标签蛋白。"

图2

斑点法检测pET32a-SiLTP1菌株的耐盐性 重组菌株(pET32a-SiLTP1)和对照菌株(pET32a)在0 mmol L-1、100 mmol L-1、200 mmol L-1、300 mmol L-1、500 mmol L-1和700 mmol L-1不同NaCl浓度的LB固体培养基上的生长情况。"

图3

重组菌株pET32a-SiLTP1 (蓝色)和对照菌株pET32a (橙色)在含200 mmol L-1 NaCl的LB液体培养基中的生长曲线 * 表示在0.05概率水平差异显著。"

图4

SiLTP1过表达株系的筛选鉴定 A: SiLTP1过表达植株的潮霉素筛选。B: SiLTP1过表达植株的PCR鉴定; M: DNA marker; 1~4: T3代过表达株系; 5: 阴性对照Ci846。C: SiLTP1基因在对照Ci846和过表达株系OE1~OE4中的相对表达量。不同小写字母表示在0.05概率水平差异显著。"

图5

盐胁迫下对照及SiLTP1过表达植株的表型 A: 0 mmol L-1和100 mmol L-1 NaCl处理7 d后谷子各株系表型。B: 0 mmol L-1和100 mmol L-1 NaCl处理7 d后谷子各株系的根长和苗长统计。不同小写字母表示在0.05概率水平差异显著。"

图6

盐处理后Ci846及SiLTP1过表达株系的生理指标测定及DAB染色 不同小写字母表示在0.05概率水平差异显著。"

[1] Zhou H P, Shi H F, Yang Y Q, Feng X X, Chen X, Xiao F, Lin H H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics, 2024, 51: 16-34.
[2] Xiao F, Zhou H P. Plant salt response: perception, signaling, and tolerance. Front Plant Sci, 2023, 13: 1053699.
[3] Atta K, Mondal S, Gorai S, Singh A P, Kumari A, Ghosh T, Roy A, Hembram S, Gaikwad D J, Mondal S, Bhattacharya S, Jha U C, Jespersen D. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Front Plant Sci, 2023, 14: 1241736.
[4] Kader J C. Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci, 1997, 2: 66-70.
[5] Kader J C, Julienne M, Vergnolle C. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem, 1984, 139: 411-416.
[6] Missaoui K, Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Brini F, Diaz-Perales A, Tome-Amat J. Plant non-specific lipid transfer proteins: an overview. Plant Physiol Biochem, 2022, 171: 115-127.
[7] Salminen T A, Blomqvist K, Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. Planta, 2016, 244: 971-997.
[8] Liu F, Zhang X B, Lu C M, Zeng X H, Li Y J, Fu D H, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66: 5663-5681.
[9] Fang C W, Wu S W, Li Z W, Pan S S, Wu Y R, An X L, Long Y, Wei X, Wan X Y. A systematic investigation of lipid transfer proteins involved in male fertility and other biological processes in maize. Int J Mol Sci, 2023, 24: 1660.
[10] Hairat S, Baranwal V K, Khurana P. Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles. Plant Physiol Biochem, 2018, 130: 418-430.
[11] Missaoui K, Ghorbel M, Jrad O, Masmoudi K, Brini F. The wheat lipid transfer protein (TdLTP2) mitigates biotic and abiotic stress damages in transgenic Arabidopsis thaliana plants. Physiol Mol Plant Pathol, 2023, 127: 102096.
[12] Pitzschke A, Datta S, Persak H. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol Plant, 2014, 7: 722-738.
[13] Yang Y X, Song H, Yao P P, Zhang S T, Jia H F, Ye X F. NtLTPI.38, a plasma membrane-localized protein, mediates lipid metabolism and salt tolerance in Nicotiana tabacum. Int J Biol Macromol, 2023, 242: 125007.
[14] 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55: 653-665.
Jia G Q, Diao X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Sci Agric Sin, 2022, 55: 653-665 (in Chinese with English abstract).
[15] Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549-554.
[16] 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29: 292-301.
Jia G Q, Diao X M. Current status and perspectives of researches on foxtail millet (Setaria italica (L.) P. Beauv.): a potential model of plant functional genomics studies. Chin Bull Life Sci, 2017, 29: 292-301 (in Chinese with English abstract).
[17] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
[18] 娄燕宏, 丁汉凤, 诸葛玉平, 王会, 陈青, 赵鹏, 王德领, 孙鑫. 山东省谷子产业化发展的制约因素及对策研究. 中国农业信息, 2016, (12): 31-33.
Lou Y H, Ding H F, Zhuge Y P, Wang H, Chen Q, Zhao P, Wang D L, Sun X. Study on restrictive factors and countermeasures of millet industrialization development in Shandong province. China Agric Inf, 2016, (12): 31-33 (in Chinese).
[19] Wang M Z, Li P, Li C, Pan Y L, Jiang X Y, Zhu D Y, Zhao Q, Yu J J. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol, 2014, 14: 290.
[20] Li C, Yue J, Wu X W, Xu C, Yu J J. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot, 2014, 65: 5415-5427.
[21] Li J R, Dong Y, Li C, Pan Y L, Yu J J. SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci, 2017, 7: 2053.
[22] Pan Y L, Li J R, Jiao L C, Li C, Zhu D Y, Yu J J. A non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress. Front Plant Sci, 2016, 7: 1752.
[23] 孟凡花, 李臻, 王庆国, 刘炜. 谷子脂质转移蛋白基因SiLTP1的克隆及表达分析. 山东农业科学, 2021, 53(10): 1-7.
Meng F H, Li Z, Wang Q G, Liu W. Cloning and expression analysis of lipid transfer protein gene SiLTP1 of foxtail millet. Shandong Agric Sci, 2021, 53(10): 1-7 (in Chinese with English abstract).
[24] Kumar D, Yusuf M A, Singh P, Sardar M, Sarin N B. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma, 2013, 250: 1079-1089.
[25] Huang L, Wu D Z, Zhang G P. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ Sci B, 2020, 21: 426-441.
[26] Wang M, Wang M, Zhao M, Wang M C, Liu S P, Tian Y C, Moon B, Liang C C, Li C L, Shi W M, Bai M Y, Liu S W, Zhang W, Hwang I, Xia G M. TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance. New Phytol, 2022, 236: 495-511.
[27] Xiang Y H, Yu J J, Liao B, Shan J X, Ye W W, Dong N Q, Guo T, Kan Y, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Lin H X. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Mol Plant, 2022, 15: 1908-1930.
[28] Zhang M, Cao Y B, Wang Z P, Wang Z Q, Shi J P, Liang X Y, Song W B, Chen Q J, Lai J S, Jiang C F. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol, 2018, 217: 1161-1176.
[29] Zhang H L, Yu F F, Xie P, Sun S Y, Qiao X H, Tang S Y, Chen C X, Yang S, Mei C, Yang D K, Wu Y R, Xia R, Li X, Lu J, Liu Y X, Xie X W, Ma D M, Xu X, Liang Z W, Feng Z H, Huang X H, Yu H, Liu G F, Wang Y C, Li J Y, Zhang Q F, Chen C, Ou-Yang Y D, Xie Q. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379: eade8416.
[30] Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S. A novel diligent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012, 31: 1801-1812.
[31] 杨玉婷, 李国印, 苏亚春, 郭晋隆, 许莉萍. 正响应盐胁迫的甘蔗6-磷酸葡萄糖脱氢酶基因的克隆. 福建农林大学学报(自然科学版), 2014, 43(2): 156-164.
Yang Y T, Li G Y, Su Y C, Guo J L, Xu L P. Cloning and characterization of sugarcane 6-phosphogluconate dehydrogenase gene, positive response to salt stress. J Fujian Agric For Univ (Nat Sci Edn), 2014, 43(2): 156-164 (in Chinese with English abstract).
[32] Murphy M P, Bayir H, Belousov V, Chang C J, Davies K J A, Davies M J, Dick T P, Finkel T, Forman H J, Janssen-Heininger Y, Gems D, Kagan V E, Kalyanaraman B, Larsson N G, Milne G L, Nyström T, Poulsen H E, Radi R, Van Remmen H, Schumacker P T, Thornalley P J, Toyokuni S, Winterbourn C C, Yin H Y, Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab, 2022, 4: 651-662.
[33] 张梦如, 杨玉梅, 成蕴秀, 周滔, 段晓艳, 龚明, 邹竹荣. 植物活性氧的产生及其作用和危害. 西北植物学报, 2014, 34: 1916-1926.
Zhang M R, Yang Y M, Cheng Y X, Zhou T, Duan X Y, Gong M, Zou Z R. Generation of reactive oxygen species and their functions and deleterious effects in plants. Acta Bot Boreali-Occident Sin, 2014, 34: 1916-1926 (in Chinese with English abstract).
[34] Tyagi S, Shumayla, Sharma Y, Madhu, Sharma A, Pandey A, Singh K, Upadhyay S K. TaGPX1-D overexpression provides salinity and osmotic stress tolerance in Arabidopsis. Plant Sci, 2023, 337: 111881.
[35] Gao W D, Liu B C, Phetmany S, Li J H, Wang D N, Liu Z Y, Gao C Q. ThDIV2, an R-R-type MYB transcription factor of Tamarix hispida, negatively regulates cadmium stress by modulating ROS homeostasis. Environ Exp Bot, 2023, 214: 105453.
[1] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[2] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[3] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[4] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[5] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[6] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[7] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[8] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[9] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279.
[10] 阳世杰, 王华智, 潘怡敏, 黄蕊, 侯森, 秦慧彬, 穆志新, 王海岗. 山西谷子种质资源株高全基因组关联分析[J]. 作物学报, 2024, 50(12): 2984-2997.
[11] 张锦辉, 肖姿仪, 李旭华, 张明, 贾春兰, 潘振远, 邱法展. 玉米突变体caspl2b2的耐盐特性评价及转录组分析[J]. 作物学报, 2024, 50(12): 3144-3154.
[12] 薛亚鹏, 辛旭霞, 王若楠, 于筱菡, 刘少雄, 王瑞云, 刘敏轩. 国内外谷子资源农艺、品质性状差异分析以及遗传多样性研究[J]. 作物学报, 2024, 50(10): 2468-2482.
[13] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[14] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[15] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .