欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 2923-2932.doi: 10.3724/SP.J.1006.2025.41080

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

宁麦36抗甲氧咪草烟矮秆突变体的鉴定及农艺性状分析

桂灵星1,2(), 凌溪铁2, 唐兆成2, 罗文臻1,2, 朱盼珍1,2, 仇泽宇2,*(), 张保龙1,2,*()   

  1. 1 南京农业大学生命科学学院, 江苏南京 210014
    2 江苏省农业科学院种质资源与生物技术研究所, 江苏南京 210014
  • 收稿日期:2024-11-15 接受日期:2025-08-13 出版日期:2025-11-12 网络出版日期:2025-08-26
  • 通讯作者: *仇泽宇, E-mail: qzy910525@163.com; 张保龙, E-mail: zhbl2248@hotmail.com
  • 作者简介:E-mail: 2023816136@stu.njau.edu.com
  • 基金资助:
    江苏省自主创新项目((CX (23) 3094)

Identification and agronomic characterization of imazamox-resistant dwarf mutants in Ningmai 36

GUI Ling-Xing1,2(), LING Xi-Tie2, TANG Zhao-Cheng2, LUO Wen-Zhen1,2, ZHU Pan-Zhen1,2, QIU Ze-Yu2,*(), ZHANG Bao-Long1,2,*()   

  1. 1 College of Life Sciences, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China
    2 Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2024-11-15 Accepted:2025-08-13 Published:2025-11-12 Published online:2025-08-26
  • Contact: *E-mail: qzy910525@163.com; E-mail: zhbl2248@hotmail.com
  • Supported by:
    Jiangsu Provincial Independent Innovation Project((CX (23) 3094)

摘要:

麦田除草剂抗性杂草频发与小麦倒伏风险已成为制约小麦高产稳产的双重挑战。本研究基于甲基磺酸乙酯(EMS)诱变技术创制新型抗除草剂矮秆小麦种质, 利用EMS对冬小麦品种宁麦36进行诱变, 通过乙酰乳酸合成酶(acetolactate synthetase, ALS)抑制剂类除草剂甲氧咪草烟对M2代诱变群体进行抗除草剂单株筛选, 结合株高测定, 最终获得2株稳定遗传的矮秆突变体WK120和WK121。2个突变体较野生型宁麦36, 具有较高的甲氧咪草烟抗性, 且株高分别下降37%和29%。ALS基因的基因型鉴定结果表明, WK120和WK121的D亚基因组上的ALS均发生G-A的单点突变, 导致第627位的丝氨酸转变为天冬酰胺。农艺性状及产量相关性状分析表明, 较野生型宁麦36, WK120、WK121的千粒重分别提高4.29%和5.17%, 每穗粒数分别提高1.9%和3.1%, 穗长分别提高1.8%和2.7%。赤霉素(GA3)处理结果表明, WK120和WK121均属于赤霉素反应敏感型种质。分子标记检测和Sanger测序结果表明, 野生型和突变体中均无已知赤霉素敏感矮秆基因(Rht4、Rht8Rht9Rht11Rht22), 暗示突变体中可能存在新的矮化基因位点。综上, 抗除草剂矮秆型宁麦36不仅对ALS抑制剂类除草剂具有较高的耐受性, 且农艺性状获得改善, 本研究为后续的抗除草剂矮秆小麦品种的培育提供了遗传资源和理论参考。

关键词: 小麦, 矮秆突变体, 甲氧咪草烟, 赤霉素, 农艺性状

Abstract:

The frequent occurrence of herbicide-resistant volunteer weed plants in wheat fields, combined with poor agronomic performance due to lodging, poses a significant challenge to achieving high yields and yield stability. To address this issue, we applied ethyl methanesulfonate (EMS) mutagenesis to the widely cultivated winter wheat variety Ningmai 36 and generated an M2 population screened for both resistance to the acetolactate synthase (ALS) inhibitor imazamox and reduced plant height. Two stable mutants, WK120 and WK121, were identified that combined both traits. These mutants survived imazamox doses lethal to the wild type and exhibited height reductions of 37% and 29%, respectively. Genotyping revealed a G-to-A point mutation in the ALS gene on the D subgenome, resulting in a serine-to-asparagine substitution at position 627. Comprehensive evaluation of agronomic and yield-related traits showed that WK120 and WK121 outperformed the wild type in several key metrics: thousand-grain weight increased by 4.29% and 5.17%, grain number per spike by 1.9% and 3.1%, and spike length by 1.8% and 2.7%, respectively. Gibberellin (GA3) application experiments confirmed that both mutants remain responsive to GA, indicating that their dwarf phenotype is not due to GA insensitivity. Furthermore, molecular marker assays and Sanger sequencing ruled out the presence of known GA-sensitive dwarfing alleles (Rht4, Rht8, Rht9, Rht11, and Rht22) in both the wild type and mutant lines, suggesting the presence of a previously uncharacterized dwarfing locus in WK120 and WK121. These herbicide-resistant, dwarf derivatives of Ningmai 36 demonstrate strong tolerance to ALS-inhibiting herbicides along with improved agronomic performance, representing valuable genetic resources for future wheat breeding programs.

Key words: wheat, dwarf mutant, imazamox, gibberellin, agronomic traits

表1

赤霉素敏感型小麦部分矮秆基因"

基因
Gene
引物名称
Primer name
引物序列
Primer sequence
(5'-3')
片段长度
Fragment length (bp)
退火温度
Annealing temperature
(℃)
染色体
Chromosome
Rht4 WMC317 F
WMC317 R
TGCTAGCAATGCTCCGGGTAAC
TCACGAAACCTTTTCCTCCTCC
170 58 2BL
Rht8 WMC503 F
WMC503 R
GCAATAGTTCCCGCAAGAAAAG
ATCAACTACCTCCAGATCCCGT
275 55 2DS
Rht9 BARC151 F
BARC151 R
TGAGGAAAATGTCTCTATAGCATCC
CGCATAAACACCTTCGCTCTTCCACTC
220 55 5AL
Rht11 WR3 F
WR3 R
GGTAGGGAGGCGAGAGGCGAG
GGCCATCTCCAGCTGCTCCAGCTA
220 65 4B
Rht22 Xgwm471 F
Xgwm471 R
CGGCCCTATCATGGCTG
GCTTGCAAGTTCCATTTTGC
149 60 7AS

图1

抗性小麦基因组ALS基因序列 A: WK120突变位点; B: WK121突变位点。红框处代表由G-A的单点突变。"

图2

小麦野生型宁麦36和矮秆突变体WK120、WK121对甲氧咪草烟的抗性水平 图下方数字表示浓度, 单位g a.i. hm-2。标尺为10 cm。"

表2

小麦野生型宁麦36和矮秆突变体WK120、WK121主要农艺性状的比较"

材料
Material
宁麦36
Ningmai 36
WK120 WK121
株高Plant height (cm) 80.45±3.29 a 50.60±2.06 c 57.00±3.00 b
旗叶长度Flag leaf length (cm) 18.87±2.32 a 20.17±3.42 a 19.60±3.27 a
旗叶宽度Flag leaf width (cm) 1.69±0.14 a 1.44±0.22 b 1.46±0.32 b
每穗粒数Number of grains per panicle 40.66±7.75 a 41.47±4.36 a 41.93±4.76 a
穗长Spike length (cm) 8.77±0.78 a 8.92±1.08 a 9.01±0.81 a
节间数 Number of internodes 5.90±0.32 a 4.80±0.42 b 4.70±0.48 b
平均节间长Average internode length (cm) 14.28±3.15 a 10.67±3.56 b 13.05±4.88 ab
第4节间充实度Intersegmental fullness of fourth internode (mg cm-1) 24.54±3.46 a 23.18±2.30 a 20.36±5.23 a

表3

小麦野生型宁麦36和矮秆突变体WK120、WK121粒型和千粒重的比较"

材料 Material 宁麦36 Ningmai 36 WK120 WK121
粒长Grain length (cm) 0.66 a 0.64 a 0.66 a
粒宽Grain width (cm) 0.33 a 0.34 a 0.34 a
千粒重Thousand-seed weight (g) 40.82 a 42.58 a 42.93 a

图3

小麦野生型宁麦36和突变体WK120、WK121的主要表型特征 A: 穗长; B: 粒长; C: 茎秆横切面; D: 粒宽; E: 株高。图A~E标尺分别为5 cm, 1 cm, 10 mm, 1 cm和5 cm。"

图4

外源赤霉素(GA3)处理下野生型宁麦36与突变体WK120、WK121的苗期形态响应 A、B分别为赤霉素对宁麦36和突变体WK120、WK121苗期第一叶长度和胚芽鞘伸长影响的显著性分析。C为赤霉素(GA3)与清水(MOCK)处理下各株系的表型对比。GA: 赤霉素。不同小写字母和大写字母分别代表在0.05和0.01水平差异显著。图C标尺为1 cm。"

图5

小麦矮秆相关基因分子标记检测及Sanger测序 A、B分别为分子标记检测及Sanger测序。M: marker, 100~5000 bp。泳道1~3依次表示野生型宁麦36、突变体WK120、突变体WK121; 图中已标注出各基因目标片段大小。B图中红框处代表野生型(WT)、WK120和WK121在目标区间碱基均为CG, 突变体不含T类型拷贝。"

[1] 朱春梅, 孙环宇, 周长勇. 多种除草剂组合对麦田抗性杂草的防除效果研究. 现代农业科技, 2022, (11): 70-73.
Zhu C M, Sun H Y, Zhou C Y. Study on the control effect of multiple herbicide combinations on resistant weeds in wheat field. Mod Agric Sci Technol, 2022, (11): 70-73 (in Chinese with English abstract).
[2] 张新凤, 张国, 于居龙, 余向阳, 程金金, 吴雪芬, 束兆林. 不同化控产品对镇江地区小麦抗倒性及产量的影响. 大麦与谷类科学, 2024, 41(4): 35-39.
Zhang X F, Zhang G, Yu J L, Yu X Y, Cheng J J, Wu X F, Shu Z L. Effects of different chemical control products on lodging resistance and yield of wheat in Zhenjiang area. Barley Cereal Sci, 2024, 41(4): 35-39 (in Chinese with English abstract).
[3] 陈本洋. 不同除草剂对稻茬麦田杂草的防除效果. 现代农业科技, 2025, (2): 58-60.
Chen B Y. Evaluation of different herbicides for weed control in wheat grown after rice harvest. Mod Agric Sci Technol, 2025, (2): 58-60 (in Chinese).
[4] 魏丽, 陈译君, 施升高, 赵厚亚, 曹伟召, 肖耀忠. 不同除草剂对冬小麦田杂草的防效研究. 现代农业科技, 2025, (1): 80-82.
Wei L, Chen Y J, Shi S G, Zhao H Y, Cao W Z, Xiao Y Z. Study on the control effect of different herbicides on weeds in winter wheat field. Mod Agric Sci Technol, 2025, (1): 80-82 (in Chinese).
[5] Ali F, Tang Z C, Mo G A, Zhang B L, Ling X T, Qiu Z Y. Taxonomic and functional changes in wheat rhizosphere microbiome caused by imidazoline-based herbicide and genetic modification. Environ Res, 2024, 262: 119726.
[6] Flintham J E, Gale M D. The tom thumb dwarfing gene Rht3 in wheat. Theor Appl Genet, 1983, 66: 249-256.
doi: 10.1007/BF00251155 pmid: 24263924
[7] Worland A, Sayers E J, Korzun V. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica, 2001, 119: 157-161.
[8] Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, et al. Green revolution genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
[9] 周强, 袁中伟, 张连全, 甯顺腙, 任勇, 陶军, 李生荣, 刘登才. 四倍体小麦地方品种矮蓝麦矮秆性状的遗传分析. 作物学报, 2015, 41: 1899-1905.
doi: 10.3724/SP.J.1006.2015.01899
Zhou Q, Yuan Z W, Zhang L Q, Ning S Z, Ren Y, Tao J, Li S R, Liu D C. Genetic analysis on dwarfing trait in landrace Ailanmai of Triticum turgidum L. ssp. turgidum. Acta Agron Sin, 2015, 41: 1899-1905 (in Chinese with English abstract).
[10] 单宝雪, 刘秀坤, 肖延军, 展晓孟, 黄金鑫, 刘百川, 张玉梅, 李豪圣, 刘建军, 高欣, 等. 小麦矮秆基因Rht-B1bRht-D1b的降秆效应及株高相关QTL挖掘. 麦类作物学报, 2023, 43: 1105-1114.
Shan B X, Liu X K, Xiao Y J, Zhan X M, Huang J X, Liu B C, Zhang Y M, Li H S, Liu J J, Gao X, et al. Height reduced effect of wheat dwarf genes Rht-B1b and Rht-D1b and mining of plant height related QTL. J Triticeae Crops, 2023, 43: 1105-1114 (in Chinese with English abstract).
[11] Asghar G B, 李翠, 胡银岗. 小麦矮秆基因Rht8对株高和其它农艺性状的遗传效应. 干旱地区农业研究, 2014, 32(1): 252-257.
Asghar G B, Li C, Hu Y G. The effects of dwarfing Rht8 on plant height and other agronomic traits in common wheat. Agric Res Arid Areas, 2014, 32(1): 252-257 (in Chinese with English abstract).
[12] Rebetzke G J, Richards R A. Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agric Res, 2000, 51: 235.
[13] Liu Y X, Zhang J L, Hu Y G, Chen J L. Dwarfing genes Rht4 and Rht-B1b affect plant height and key agronomic traits in common wheat under two water regimes. Field Crops Res, 2017, 204: 242-248.
[14] Xiong H C, Zhou C Y, Fu M Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Li Y T, et al. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
[15] 周春云. 小麦矮秆基因Rht8的图位克隆与功能分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2023.
Zhou C Y. Map-based Cloning and Functional Analysis of Wheat Dwarf Gene Rht8. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[16] Rebetzke G J, Ellis M H, Bonnett D G, Mickelson B, Condon A G, Richards R A. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res, 2012, 126: 87-96.
[17] Linn T Z, Bachir D G, Chen L, Hu Y G. Effects of gibberellic acid responsive dwarfing gene Rht9 on plant height and agronomic traits in common wheat. Am J Agric For, 2017, 5: 102.
[18] Ellis M H, Rebetzke G J, Chandler P, Bonnett D, Spielmeyer W, Richards R A. The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol, 2004, 31: 583-589.
doi: 10.1071/FP03207 pmid: 32688930
[19] Mohan A, Grant N P, Schillinger W F, Gill K S. Characterizing reduced height wheat mutants for traits affecting abiotic stress and photosynthesis during seedling growth. Physiol Plant, 2021, 172: 233-246.
doi: 10.1111/ppl.13321 pmid: 33421138
[20] 包芸菁. 简阳矮蓝麦矮秆基因Rht22的紧密连锁标记开发及育种利用. 四川农业大学硕士学位论文, 四川雅安, 2021.
Bao Y J. Development of Tight Linkage Markersand Utilization of the Dwarfing Gene Rht22 of Jianyang Ailanmai. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2021 (in Chinese with English abstract).
[21] 张红, 王歆, 钱禄巧, 金彦刚, 杨永乐, 夏中华. 53份小麦品系中矮秆基因检测及降秆效应分析. 甘肃农业大学学报, 2025, 60(1): 58-66.
Zhang H, Wang X, Qian L Q, Jin Y G, Yang Y L, Xia Z H. Detection of dwarf genes and analysis of plant height reduction effects in 53 wheat lines. J Gansu Agric Univ, 2025, 60(1): 58-66 (in Chinese with English abstract).
[22] Xu H L, Cheng J P, Leng Q L, Cao R, Su W C, Sun L L, Xue F, Han Y, Wu R H. Characterization of acetolactate synthase genes and resistance mechanisms of multiple herbicide resistant Lolium multiflorum. Plant Physiol Biochem, 2025, 219: 109324.
[23] 卢一帆. 新疆小麦长颖基因TaVRT2的精细定位、克隆与功能验证. 南京农业大学硕士学位论文, 江苏南京, 2021.
Lu Y F. Fine Mapping, Cloning and Functional Verification of Along Glume Regulating Gene TaVRT2 in Triticum Petropavlovskyi. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract).
[24] 赵秋实, 李倩倩, 王超杰, 蒋宏宝, 耿皆飞, 杨媛, 刘录祥, 张小燕, 谢彦周, 王成社. 普通小麦品种陕农33矮秆突变体的矮化效应分析. 麦类作物学报, 2018, 38: 1053-1064.
Zhao Q S, Li Q Q, Wang C J, Jiang H B, Geng J F, Yang Y, Liu L X, Zhang X Y, Xie Y Z, Wang C S. Analysis of the dwarfing mutagenic effect on dwarf mutants of common wheat variety Shaannong 33. J Triticeae Crops, 2018, 38: 1053-1064 (in Chinese with English abstract).
[25] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析. 作物学报, 2023, 49: 2133-2143.
doi: 10.3724/SP.J.1006.2023.21056
Su Z X, Huang Z Q, Gao R F, Zhu X C, Wang B, Chang Y, Li X S, Ding Z Q, Yi Y. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect. Acta Agron Sin, 2023, 49: 2133-2143 (in Chinese with English abstract).
[26] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析. 作物学报, 2021, 47: 974-982.
doi: 10.3724/SP.J.1006.2021.01066
He J Y, Yin S Q, Chen Y Q, Xiong J L, Wang W B, Zhou H B, Chen M, Wang M Y, Chen S W. Identification of dwarf mutants in wheat and association analysis of mutant traits. Acta Agron Sin, 2021, 47: 974-982 (in Chinese with English abstract).
[27] 周田田, 唐兆成, 李笑, 朱鹏, 邓晶晶, 杨郁文, 张保龙, 郭冬姝. 利用基因编辑技术创制低谷蛋白水稻种质. 作物学报, 2024, 50: 2435-2446.
doi: 10.3724/SP.J.1006.2024.32060
Zhou T T, Tang Z C, Li X, Zhu P, Deng J J, Yang Y W, Zhang B L, Guo D S. Development of low-gluten rice germplasm using gene editing technology. Acta Agron Sin, 2024, 50: 2435-2446 (in Chinese with English abstract).
[28] Gale M D, Marshall G A. The nature and genetic control of gibberellin insensitivity in dwarf wheat grain. Heredity, 1975, 35: 55-65.
[29] 项秉晗, 蔡新仪, 彭震, 黄卉, 董立尧. 甲氧咪草烟对耐咪唑啉酮类除草剂水稻后茬作物的安全性. 农药, 2022, 61: 889-893.
Xiang B H, Cai X Y, Peng Z, Huang H, Dong L Y. Safety assessment of imazamox-resistant rice on subsequent crops following imidazolinone herbicide application. Agrochemicals, 2022, 61: 889-893 (in Chinese with English abstract).
[30] Shimizu, Tsutomu, Nakayama I, Nagayama K, Miyazawa T, Nezu Y. Herbicide Classes in Development:Mode of Action, Targets, Genetic Engineering, Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. pp 1-41.
[31] Yu Q, Han H P, Powles S B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci, 2008, 64: 1229-1236.
[32] Zhou Q Y, Liu W P, Zhang Y S, Liu Kevin K. Action mechanisms of acetolactate synthase-inhibiting herbicides. Pestic Biochem Physiol, 2007, 89: 89-96.
[33] Sun P L, Niu L L, He P F, Yu H Y, Chen J C, Cui H L, Li X J. Trp-574-Leu and the novel Pro-197-His/Leu mutations contribute to penoxsulam resistance in Echinochloa crus-galli (L.) P. Beauv. Front Plant Sci, 2024, 15: 1488976.
[34] Busov V B, Brunner A M, Strauss S H. Genes for control of plant stature and form. New Phytol, 2008, 177: 589-607.
doi: 10.1111/j.1469-8137.2007.02324.x pmid: 18211474
[35] Rebetzke G J, Ellis M H, Bonnett D G, Condon A G, Falk D, Richards R A. The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat. Field Crops Res, 2011, 124: 323-331.
[36] 于东艳, 朱欣欣, 李巧云, 姜玉梅, 牛吉山. 小麦dms突变体株高与赤霉素代谢的关系. 河南农业科学, 2016, 45(5): 18-21.
Yu D Y, Zhu X X, Li Q Y, Jiang Y M, Niu J S. Relationship between plant height and gibberellin metabolism in wheat dms mutants. Henan Agric Sci, 2016, 45(5): 18-21 (in Chinese with English abstract).
[37] Korzun V, Röder M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene (Rht8) in wheat Part I: molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104-1109.
[38] Worland A J, Korzun V, Röder M S, Ganal M W, Law C N. Genetic analysis of the dwarfing gene Rht8 in wheat Part II: the distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet, 1998, 96: 1110-1120.
[39] Lu Q M, Lu S, Wang M, Cui C G, Condon A G, Jatayev S, Chen L, Hu Y G. The exogenous GA3 greatly affected the grain-filling process of dwarf gene Rht4 in bread wheat. Physiol Plant, 2022, 174: e13725.
[40] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111: 423-430.
doi: 10.1007/s00122-005-2008-6 pmid: 15968526
[41] Li A X, Yang W L, Guo X L, Liu D C, Sun J Z, Zhang A M. Isolation of a gibberellin-Insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker. Mol Breed, 2012, 30: 1443-1451.
[42] Wang C, Bao Y J, Yao Q, Long D, Xiao X, Fan X, Kang H Y, Zeng J, Sha L N, Zhang H Q, et al. Fine mapping of the reduced height gene Rht22 in tetraploid wheat landrace Jianyangailanmai (Triticum turgidum L.). Theor Appl Genet, 2022, 135: 3643-3660.
[1] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[2] 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484.
[3] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[4] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[5] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[6] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[7] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[8] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[9] 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086.
[10] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[11] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[12] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[13] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[14] 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047.
[15] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!