作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1747-1756.doi: 10.3724/SP.J.1006.2025.44221
胡蒙,沙丹,张晟瑞,谷勇哲,张世碧,李静,孙君明*,邱丽娟*,李斌*
HU Meng,SHA Dan,ZHANG Sheng-Rui,GU Yong-Zhe,ZHANG Shi-Bi,LI Jing,SUN Jun-Ming*,QIU Li-Juan*,LI Bin*
摘要:
大豆是重要的粮饲兼用作物。分枝数是影响大豆产量的重要农艺性状之一。本研究以少分枝大豆品种中黄35与多分枝品种中黄13杂交衍生的RIL F2:7-8群体为材料,结合重测序基因型数据构建的高密度遗传连锁图谱,采用QTL IciMapping完备复合区间定位方法,在5个种植环境下定位与分枝数相关的QTL。结果显示,在2号、6号、18号和19号染色体上共定位到6个与分枝数相关的QTL。其中位于2号染色体的qVBN02-1在2个环境中均被检测到,平均解释16.07%的表型变异,为新发掘的分枝数稳定主效QTL。该位点区间遗传距离为0.3 cM,物理距离为261.37 kb,包含29个注释基因。经QTL区间内双亲错义SNP筛选,发掘出22个分枝数潜在候选基因。GO注释分析显示,这些基因编码的蛋白涉及多个影响植物生长发育的重要过程。本研究不仅为大豆株型改良提供了分子标记靶位点,也为精细定位大豆分枝数关键基因奠定了基础。
[1] Agyenim-Boateng K G, Zhang S R, Zhang S B, Khattak A N, Shaibu A, Abdelghany A M, Qi J, Azam M, Ma C Y, Feng Y, et al. The nutritional composition of the vegetable soybean (Maodou) and its potential in combatting malnutrition. Front Nutr, 2023, 9: 1034115. [2] Liu K S. Soybeans: Chemistry, Technology, and Utilization. Boston: Springer, 1997. pp 381–383, 401–406, 499–504. [3] Liu S L, Zhang M, Feng F, Tian Z X. Toward a “green revolution” for soybean. Mol Plant, 2020, 13: 688–697. [4] Wang Y, Jiao Y L. Axillary meristem initiation-a way to branch out. Curr Opin Plant Biol, 2018, 41: 61–66. [5] 巩鹏涛, 李迪. 植物分枝发育的遗传控制. 分子植物育种, 2005, 3: 151–162. Gong P T, Li D. Genetic control of plant shoot branching. Mol Plant Breed, 2005, 3: 151–162 (in Chinese with English abstract). [6] Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol, 2011, 12: 211–221. [7] Teichmann T, Muhr M. Shaping plant architecture. Front Plant Sci, 2015, 6: 233. [8] Bell E M, Lin W C, Husbands A Y, Yu L F, Jaganatha V, Jablonska B, Mangeon A, Neff M M, Girke T, Springer P S. Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc Natl Acad Sci USA, 2012, 109: 21146–21151. [9] Finlayson S A. Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1. Plant Cell Physiol, 2007, 48: 667–677. [10] Wang J, Tian C H, Zhang C, Shi B H, Cao X W, Zhang T Q, Zhao Z, Wang J W, Jiao Y L. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell, 2017, 29: 1373–1387. [11] Choi M S, Woo M O, Koh E B, Lee J, Ham T H, Seo H S, Koh H J. Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep, 2012, 31: 57–65. [12] Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541–544. [13] Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, et al. Control of tillering in rice. Nature, 2003, 422: 618–621. [14] Lu Z F, Shao G N, Xiong J S, Jiao Y Q, Wang J, Liu G F, Meng X B, Liang Y, Xiong G S, Wang Y H, et al. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics, 2015, 42: 71–78. [15] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42: 545–549. [16] Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano H Y. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell, 2015, 27: 1173–1184. [17] Zhang L, Yu H, Ma B, Liu G F, Wang J J, Wang J M, Gao R C, Li J J, Liu J Y, Xu J, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun, 2017, 8: 14789. [18] Dong C H, Zhang L C, Zhang Q, Yang Y X, Li D P, Xie Z C, Cui G Q, Chen Y Y, Wu L F, Li Z, et al. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun, 2023, 14: 836. [19] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410. [20] Liu Y T, Wu G X, Zhao Y P, Wang H H, Dai Z Y, Xue W C, Yang J, Wei H B, Shen R X, Wang H Y. DWARF53 interacts with transcription factors UB2/UB3/TSH4 to regulate maize tillering and tassel branching. Plant Physiol, 2021, 187: 947–962. [21] Yao D, Liu Z Z, Zhang J, Liu S Y, Qu J, Guan S Y, Pan L D, Wang D, Liu J W, Wang P W. Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res, 2015, 14: 6101–6109. [22] Shim S, Kim M Y, Ha J, Lee Y H, Lee S H. Identification of QTLs for branching in soybean (Glycine max (L.) Merrill). Euphytica, 2017, 213: 225. [23] Bao A L, Chen H F, Chen L M, Chen S L, Hao Q N, Guo W, Qiu D Z, Shan Z H, Yang Z L, Yuan S L, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019, 19: 131. [24] Sun Z X, Su C, Yun J X, Jiang Q, Wang L X, Wang Y N, Cao D, Zhao F, Zhao Q S, Zhang M C, et al. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnol J, 2019, 17: 50–62. [25] Guo W, Chen L M, Chen H F, Yang H L, You Q B, Bao A L, Chen S L, Hao Q N, Huang Y, Qiu D Z, et al. Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions. Plant Biotechnol J, 2020, 18: 1639–1641. [26] Liang Q J, Chen L Y, Yang X, Yang H, Liu S L, Kou K, Fan L, Zhang Z F, Duan Z B, Yuan Y Q, et al. Natural variation of Dt2 determines branching in soybean. Nat Commun, 2022, 13: 6429. [27] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283.
[28] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL. 作物学报, 2023, 49: 1532–1541. [29] van Ooijen J W. JoinMap® 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen, Netherlands: Kyazma, 2006. [30] Li S S, Wang J K, Zhang L Y. Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS One, 2015, 10: e0132414. [31] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374. [32] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; Iso-2; Iso-3. Fly, 2012, 6: 80–92. [33] Sayama T, Hwang T, Yamazaki H, Yamaguchi N, Komatsu K, Takahashi M, Suzuki C, Miyoshi T, Tanaka Y, Xia Z J, et al. Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breed Sci, 2010, 60: 380–389. [34] Bernard R L. Two genes affecting stem termination in Soybeans. Crop Sci, 1972, 12: 235–239. [35] Tian Z X, Wang X B, Lee R A, Li Y H, Specht J E, Nelson R L, McClean P E, Qiu L J, Ma J X. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563–8568. [36] Ping J Q, Liu Y F, Sun L J, Zhao M X, Li Y H, She M Y, Sui Y, Lin F, Liu X D, Tang Z X, et al. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell, 2014, 26: 2831–2842. [37] Zhang D J, Wang X T, Li S, Wang C F, Gosney M J, Mickelbart M V, Ma J X. A post-domestication mutation, Dt2, triggers systemic modification of divergent and convergent pathways modulating multiple agronomic traits in soybean. Mol Plant, 2019, 12: 1366–1382. |
[1] | 杨海洋, 吴林宣, 李博纹, 石翰峰, 袁禧龙, 刘金朝, 蔡海荣, 陈诗怡, 郭涛, 王慧. 基于QTL定位发现的OsWRI3调控水稻种子的落粒性[J]. 作物学报, 2025, 51(7): 1712-1724. |
[2] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
[3] | 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735. |
[4] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
[5] | 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408. |
[6] | 殷丛丛, 李睿琦, 岳霈尧, 李晨, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 基于闭合哑铃介导等温扩增可视化检测大豆花叶病毒SC15方法的建立及应用[J]. 作物学报, 2025, 51(5): 1248-1260. |
[7] | 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177. |
[8] | 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981. |
[9] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
[10] | 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333. |
[11] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
[12] | 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284. |
[13] | 杨景发, 余鑫莲, 姚有华, 姚晓华, 王蕾, 吴昆仑, 李新. 青稞分蘖角度的QTL定位[J]. 作物学报, 2025, 51(1): 260-272. |
[14] | 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173. |
[15] | 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266. |
|