欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1838-1849.doi: 10.3724/SP.J.1006.2025.44219

• 耕作栽培·生理生化 • 上一篇    下一篇

离子锌和纳米锌对马铃薯生理特性、产量及品质的影响

李秋云1,2,李世贵1,2,范军亮1,2,刘昊天2,3,赵晓斌1,2,吕硕1,2,王艳浩1,2,岳云4,张宁1,2,*,司怀军1,2   

  1. 1 甘肃农业大学生命科学技术学院, 甘肃兰州 730070; 2 省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学, 甘肃兰州 730070; 3 甘肃农业大学农学院, 甘肃兰州 730070; 4 甘肃省农业工程技术研究院, 甘肃兰州 730010
  • 收稿日期:2024-12-28 修回日期:2025-03-26 接受日期:2025-03-26 出版日期:2025-07-12 网络出版日期:2025-04-03
  • 基金资助:
    本研究由国家重点研发计划项目(渭源县寒区马铃薯种薯繁育提质增效关键技术集成与示范)(2022YFD1602103)资助。

Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato

LI Qiu-Yun,LI Shi-Gui,FAN Jun-Liang,LIU Hao-Tian,ZHAO Xiao-Bin,LYU Shuo,WANGYan-Hao,YUE Yun,ZHANG Ning,SI Huai-Jun   

  1. 1 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2 State Key Laboratory of Aridland Crop Science / Gansu Agricultural University, Lanzhou 730070, Gansu, China; 3 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 4 Gansu Agricultural Engineering Technology Research Institute, Lanzhou 730010, Gansu, China
  • Received:2024-12-28 Revised:2025-03-26 Accepted:2025-03-26 Published:2025-07-12 Published online:2025-04-03
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (Integration and Demonstration of Key Technologies for Quality and Efficiency Improvement of Seed Potato Propagation in Cold Regions of Weiyuan County) (2022YFD1602103).

摘要:

为探究不同种类锌肥及施用方式对马铃薯生长发育、产量和品质的影响,以马铃薯陇薯14为供试品种,于20232024年进行大田试验,设置CK (不施锌肥)T1 (ZnSO4·7H2O基施,30 kg hm?2)T2(0.3% ZnSO4·7H2O+0.05%尿素混合溶液喷施)T3 (10 mg L?1纳米锌拌种)T4 (20 mg L?1纳米锌拌种)T5 (喷施10 mg L?1纳米锌) 6个处理。结果表明,与不施锌肥(CK)相比,在块茎形成期和膨大期,离子锌和纳米锌显著提高叶片叶绿素相对含量值(SPAD);在块茎膨大期和淀粉积累期,离子锌和纳米锌处理的净光合速率(Pn)过氧化物酶(POD)过氧化氢酶(CAT)活性均显著增高,各处理的马铃薯丙二醛(MDA)和脯氨酸(Pro)含量均降低;在块茎膨大期,离子锌和纳米锌处理的块茎干物质积累量与CK相比均显著增加。与CK相比,施锌处理的马铃薯产量和大中薯率均有提高,喷施10 mg L?1纳米锌处理的马铃薯的增产幅度最高,在2024年达到52,947.25 kg hm?2。此外,喷施10 mg L?1纳米锌处理的淀粉含量、维生素C含量、块茎锌含量和块茎锌积累量CK显著提高。综上所述,喷施10 mg L?1纳米锌和0.3%ZnSO4·7H2O+0.05%尿素混合溶液处理可以促进马铃薯生长,提升光合特性、抗氧化酶活性和品质,研究结果可为马铃薯锌肥的合理施用策略提供科学依据。

关键词: 锌肥, 马铃薯, 施肥方式, 产量, 品质

Abstract:

To investigate the effects of different zinc fertilizer types and application methods on potato growth, yield, and quality, field experiments were conducted in 2023 and 2024 using the potato variety ‘Longshu 14’. Six treatments were applied: CK (no zinc fertilizer), T1 (basal application of ZnSO4·7H2O, 30 kg hm?2), T2 (foliar spraying of 0.3% ZnSO4·7H2O + 0.05% urea), T3 (seed dressing with 10 mg L?1 nano-zinc), T4 (seed dressing with 20 mg L?1 nano-zinc), and T5 (foliar spraying of 10 mg L?1 nano-zinc). The results showed that both ionic zinc and nano-zinc fertilizers significantly increased leaf relative chlorophyll content (SPAD values) compared to CK during the tuber formation and bulking stages. During the tuber bulking and starch accumulation stages, the net photosynthetic rate (Pn), peroxidase (POD), and catalase (CAT) activities were significantly enhanced under ionic zinc and nano-zinc treatments. Additionally, all zinc treatments led to a reduction in malondialdehyde (MDA) and proline (Pro) levels. During the tuber bulking stage, tuber dry matter accumulation was significantly higher in the zinc-treated groups than in CKAll zinc treatments increased potato yield and the proportion of large and medium-sized tubers compared to CK. The highest yield increase was observed under T5 (foliar spraying of 10 mg L?1 nano-zinc), reaching 52,947.25 kg hm?2 in 2024. Furthermore, this treatment significantly enhanced tuber starch content, vitamin C content, zinc concentration, and total tuber zinc accumulation compared to CK (P < 0.05). In conclusion, foliar spraying of 10 mg L?1 nano-zinc and spraying a mixture of 0.3% ZnSO4·7H2O + 0.05% urea effectively promoted potato growth, improved photosynthetic performance, and enhanced antioxidant enzyme activities. These findings provide a scientific basis for the optimal selection and application of zinc fertilizers in potato production.

Key words: zinc fertilizer, potato, fertilization method, yield, quality

[1] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应. 作物学报, 2025, 51: 713724.

Su M, Wu J R, Hong Z Q, Li F G, Zhou T, Wu H L, Kang J H. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in semi-arid area of northwest China. Acta Agron Sin2025, 51: 713724 (in Chinese with English abstract).

[2] 毛伟荣. 施用锌肥对马铃薯产量的影响. 特种经济动植物, 2022, 25(9): 2223.

Mao W R. Effect of zinc fertilizer application on potato yield. Spec Econ Anim Plants, 2022, 25(9): 22–23 (in Chinese).

[3] 袁辉, 惠领领, 谢军红, 周永杰, 谢丽华. 铁、锌肥对马铃薯产量、品质及土壤养分的影响. 中国农学通报, 2024, 40(12): 1521.

Yuan H, Hui L L, Xie J H, Zhou Y J, Xie L H. Effects on yield and quality of potato and soil nutrients: iron and zinc fertilizers. Chin Agric Sci Bull, 2024, 40(12): 15–21 (in Chinese with English abstract).

[4] Mahmoud A W M, Abdeldaym E A, Abdelaziz S M, El-Sawy M B I, Mottaleb S A. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy, 2020, 10: 19.

[5] 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展. 中国农业科技导报, 2024, 26(8): 919.

Sun L, Xu Y, Cai Q, Guo J H, Zhao C, Guo B W, Xing Z P, Huo Z Y, Zhang H C, Hu Y J. Research progress on effects of medium and trace elements on yield and quality of rice. Chin Agric Sci Technol, 2024, 26(8): 9–19 (in Chinese with English abstract).

[6] 李芳亭, 鲁强, 王世国, 周军, 袁海生, 姜栩. 黄土丘陵区土壤钼锌含量及农作物对钼锌的反应. 农业环境科学学报, 2002, 21: 559561.

Li F T, Lu Q, Wang S G, Zhou J, Yuan H S, Jiang X. Concentration of molybdenum and zinc in soil of upland of loess and response of crops. J Agro-Environ Sci, 2002, 21: 559–561 (in Chinese with English abstract).

[7] 杨富强. 微肥对玉米东农264生长、籽粒产量及品质的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2023.

Yang F Q. Effect of Microfertilizer on the Growth, Grain Yield and Quality of Dongnong 264. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2023 (in Chinese with English abstract).

[8] 孙莲强, 顾学花, 张佳蕾, 刘辰, 高波, 孙奇泽, 王媛媛, 魏彤彤, 李向东. 锌肥对花生生理特性、产量及品质的影响. 花生学报, 2014, 43(1): 16.

Sun L Q, Gu X H, Zhang J L, Liu C, Gao B, Sun Q Z, Wang Y Y, Wei T T, Li X D. Effects of applying zinc fertilizer on physiological characteristics, yield and quality of peanut. J Peanut Sci, 2014, 43(1): 1–6 (in Chinese with English abstract).

[9] Elemike E E, Uzoh I M, Onwudiwe D C, Babalola O O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci, 2019, 9: 499.

[10] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响. 作物杂志, 2022, (4): 107114.

Chen S Y, Wang R, Chen Z Q, Zhang H P, Wang J J, Shan Y H, Yang Y J. Effects of nano-zinc and ion-zinc on rice yield formation and grain zinc content. Crops, 2022, (4): 107–114 (in Chinese with English abstract).

[11] 王锐. 纳米锌施用方式和用量对优质食味粳稻南粳9108产量和品质强化的影响. 扬州大学硕士学位论文, 江苏扬州, 2022.

Wang R. Effects of Application Mode and Dosage of Nano-zinc on Yield and Quality Enhancement of Good Quality and Tasty Japonica rice Nanjing 9108. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).

[12] Walworth J L, Muniz J E. A compendium of tissue nutrient concentrations for field-grown potatoes. Am Potato J, 1993, 70: 579–597.

[13] 赵兴杰, 韩旭平, 程升. 干旱条件下膜下滴灌施锌对马铃薯的促进效应. 山西农业科学, 2017, 45(1): 63–66.

Zhao X J, Han X P, Cheng S. Effect of zinc fertilization on potato under drip irrigation under drought condition. J Shanxi Agric Sci, 2017, 45(1): 63–66 (in Chinese with English abstract).

[14] 杜平, 赵竹青, 宋波涛, 刘新伟. 马铃薯锌营养特性及锌生物强化技术研究进展. 华中农业大学学报, 2021, 40(4): 3643.

Du P, Zhao Z Q, Song B T, Liu X W. Advances on nutritional characteristics of zinc and zinc biofortification in potato. J Huazhong Agric Univ, 2021, 40(4): 36–43 (in Chinese with English abstract).

[15] 范奕, 李亚杰, 罗磊, 姚彦红, 李丰先, 董爱云, 刘慧霞, 牛彩萍, 李德明. 叶面施锌对马铃薯产量和锌含量的影响. 中国土壤与肥料, 2023, (10): 217226.

Fan Y, Li Y J, Luo L, Yao Y H, Li F X, Dong A Y, Liu H X, Niu C P, Li D M. Effect of foliar zinc application on yield and zinc concentration of potato. Soil Fert China, 2023, (10): 217–226 (in Chinese with English abstract).

[16] Huang X S, Liu J H, Chen X J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol, 2010, 10: 230.

[17] Shi J, Fu X Z, Peng T, Huang X S, Fan Q J, Liu J H. Spermine pretreatment confers dehydration tolerance of Citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol, 2010, 30: 914–922.

[18] Aebi H. Catalase in vitro. Methods Enzymol, 1984, 105: 121–126.

[19] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.

Zou Q. Experimental Instruction of Plant Physiology. Beijing: China Agriculture Press, 2000 (in Chinese).

[20] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205–207.

[21] 杜平, 张海清, 李磊, 赵竹青, 刘新伟. 基施锌肥对马铃薯锌含量及块茎品质的影响. 中国马铃薯, 2020, 34(5): 275280.

Du P, Zhang H Q, Li L, Zhao Z Q, Liu X W. Effect of soil application of zinc on zinc content and tuber quality of potato. Chin Potato J, 2020, 34(5): 275–280 (in Chinese with English abstract).

[22] Cakmak I, Pfeiffer W H, McClafferty B. REVIEW: biofortification of durum wheat with zinc and iron. Cereal Chem, 2010, 87: 10–20.

[23] Zając T, Oleksy A, Stokłosa A, Klimek-Kopyra A, Macuda J. Vertical distribution of dry mass in cereals straw and its loss during harvesting. Int Agrophys, 27: 89–95.

[24] 边彩燕, 李世成, 刘颖, 陈超, 赵婧, 李继明, 刘喜霞, 张连瑞. 外源铁、锌对马铃薯产量的影响. 农业科技与信息, 2024, 21(7): 5357.

Bian C Y, Li S C, Liu Y, Chen C, Zhao J, Li J M, Liu X X, Zhang L R. Effects of exogenous iron and zinc on potato yield. Agric Sci Technol Inf, 2024, 21(7): 53–57 (in Chinese).

[25] 付春霞, 张元珍, 王衍安, 范晓丹, 闫玉静, 张友朋. 缺锌胁迫对苹果叶片光合速率及叶绿素荧光特性的影响. 中国农业科学, 2013, 46: 38263833.

Fu C X, Zhang Y Z, Wang Y A, Fan X D, Yan Y J, Zhang Y P. Effects of zinc deficiency on photosynthetic rate and chlorophyll fluorescence characteristics of apple leaves. Sci Agric Sin, 2013, 46: 3826–3833 (in Chinese with English abstract).

[26] 惠领领, 谢军红, 李玲玲, 周永杰, 王进斌, 谢丽华, 赵潇潇. 铁锌肥对陇中旱农区马铃薯光合特性和产量的影响. 甘肃农业大学学报, 2023, 58(2): 6876.

Hui L L, Xie J H, Li L L, Zhou Y J, Wang J B, Xie L H, Zhao X X. Effects of iron and zinc fertilization on photosynthetic characteristics and yield of potato in semi-arid areas of central Gansu Province. J Gansu Agric Univ, 2023, 58(2): 68–76 (in Chinese with English abstract).

[27] 宋佳承, 王天, 闫士朋, 张俊莲, 沈宝云, 李朝周. 不同种植模式对土壤质量及马铃薯生长的影响. 土壤学报, 2020, 57: 490499.

Song J C, Wang T, Yan S P, Zhang J L, Shen B Y, Li C Z. Influences of planting pattern on soil quality and potato growth. Acta Pedol Sin, 2020, 57: 490–499 (in Chinese with English abstract).

[28] 胡新元, 孙小花, 罗爱花, 柳永强, 唐德晶, 谢奎忠. 叶面喷施硫酸锌对马铃薯抗病性和产量的影响. 西北农业学报, 2023, 32: 11871193.

Hu X Y, Sun X H, Luo A H, Liu Y Q, Tang D J, Xie K Z. Effects of foliar spraying of zinc sulfate on disease resistance and yield of potato. Acta Agric Boreali-Occident Sin, 2023, 32: 1187–1193 (in Chinese with English abstract).

[29] 肖宝莹, 王会志, 吴春燕, 田庆龙, 梁美兮, 王薇. 外源锌对番茄锌元素积累及吸收利用的影响. 吉林农业大学学报, 网络首发 [2024-04-09]. https://doi.org/10.13327/j.jjlau.2024.20455.

Xiao B Y, Wang H Z, Wu C Y, Tian Q L, Liang M X, Wang W. Effects of exogenous zinc on zinc accumulation, absorption and utilization in tomato. J Jilin Agric Univ, Published online [2024-04-09], https://doi.org/10.13327/j.jjlau.2024.20455 (in Chinese with English abstract).

[30] 王延明, 张春红, 邱慧珍, 孙小龙, 张俊莲, 王蒂, 李德明. 半干旱雨养条件下不同锌肥对马铃薯新大坪干物质积累和产量的影响. 甘肃农业大学学报, 2014, 49(6): 3540.

Wang Y M, Zhang C H, Qiu H Z, Sun X L, Zhang J L, Wang D, Li D M. Effects of different kinds of zinc fertilizer application on dry matter accumulation and yield of potato in rainfed conditions in Gansu Province. J Gansu Agric Univ, 2014, 49(6): 35–40 (in Chinese with English abstract).

[31] 孙小龙, 王延明, 张春红, 张俊莲, 邱慧珍, 王蒂, 李德明. 不同锌肥对旱作马铃薯植株锌的吸收、积累与分配的影响. 干旱地区农业研究, 2015, 33(3): 7278.

Sun X L, Wang Y M, Zhang C H, Zhang J L, Qiu H Z, Wang D, Li D M. Effects of different kinds of zinc fertilizers on zinc absorption, accumulation and distribution of potato under rainfed conditions. Agric Res Arid Areas, 2015, 33(3): 72–78 (in Chinese with English abstract).

[32] 苏素苗, 康天恺, 邹家龙, 汪本福, 张洋洋, 廖世鹏, 李小坤. 不同水稻品种和施锌方式对水稻产量及籽粒锌有效性的影响. 中国农业科学, 2024, 57: 30233034.

Su S M, Kang T K, Zou J L, Wang B F, Zhang Y Y, Liao S P, Li X K. Effects of different rice varieties and zinc application methods on rice yield and grain zinc availability. Sci Agric Sin, 2024, 57: 3023–3034 (in Chinese with English abstract).

[33] 索炎炎, 张翔, 司贤宗, 李亮, 余琼, 程培军, 邱岭军, 余辉. 不同施锌方式下外源磷对花生根系形态、叶绿素含量及产量的影响. 中国油料作物学报, 2021, 43: 664672.

Suo Y Y, Zhang X, Si X Z, Li L, Yu Q, Cheng P J, Qiu L J, Yu H. Effects of exogenous phosphorus on root morphology, chlorophyll content and yield of peanut under different zinc application methods. Chin J Oil Crop Sci, 2021, 43: 664–672 (in Chinese with English abstract).

[34] Nair R, Varghese S H, Nair B G, Maekawa T, Yoshida Y, Kumar D S. Nanoparticulate material delivery to plants. Plant Sci, 2010, 179: 154–163.

[35] Zhang Y Q, Deng Y, Chen R Y, Cui Z L, Chen X P, Yost R, Zhang F S, Zou C Q. The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant Soil, 2012, 361: 143–152.

[36] 张欣, 户少武, 章燕柳, 牛玺朝, 邵在胜, 杨阳, 童楷程, 王云霞, 杨连新. 叶面施锌对不同水稻品种稻米锌营养的影响及其机理. 农业环境科学学报, 2019, 38: 1450–1458.

Zhang X, Hu S W, Zhang Y L, Niu X C, Shao Z S, Yang Y, Tong K C, Wang Y X, Yang L X. Effect of foliar zinc application on zinc nutrient levels of different rice cultivars. J Agro-Environ Sci, 2019, 38: 1450–1458 (in Chinese with English abstract).

[37] Kromann P, Valverde F, Alvarado S, Vélez R, Pisuña J, Potosí B, Taipe A, Caballero D, Cabezas A, Devaux A. Can Andean potatoes be agronomically biofortified with iron and zinc fertilizers. Plant Soil, 2017, 411: 121–138.

[38] White P J, Thompson J A, Wright G, Rasmussen S K. Biofortifying Scottish potatoes with zinc. Plant Soil, 2017, 411: 151–165.

[39] 马振勇, 杜虎林, 刘荣国, 严子柱. 施锌肥对马铃薯干物质积累、生理特性及块茎营养品质的影响. 干旱区资源与环境, 2017, 31(1): 148153.

Ma Z Y, Du H L, Liu R G, Yan Z Z. Effects of Zinc fertilizer on potato dry matter accumulation, physiological characteristics, and tubers nutritional quality. J Arid Land Resour Environ, 2017, 31(1): 148–153 (in Chinese with English abstract).

[1] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[2] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[3] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[4] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[5] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[6] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[7] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[8] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[9] 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735.
[10] 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466.
[11] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
[12] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[13] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
[14] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[15] 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .