作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1827-1837.doi: 10.3724/SP.J.1006.2025.43028
张建鹏1(), 王国瑞3, 别海2, 叶飞宇3, 马晨晨3, 梁小菡3, 鲁晓民3, 尚霄丽4,*(
), 曹丽茹3,*(
)
ZHANG Jian-Peng1(), WANG Guo-Rui3, BIE Hai2, YE Fei-Yu3, MA Chen-Chen3, LIANG Xiao-Han3, LU Xiao-Min3, SHANG Xiao-Li4,*(
), CAO Li-Ru3,*(
)
摘要:
干旱影响玉米的生长与发育, 最终导致产量损失。为挖掘玉米抗旱关键基因并解析其抗旱分子机制, 从玉米干旱-复水转录组中鉴定到1个响应干旱胁迫基因GRMZM2G050550, 命名为ZmMYB153。基因进化树及亚细胞定位分析发现, ZmMYB153蛋白与其他物种中的同源蛋白具有高度的相似性, ZmMYB153定位在细胞核中。组织表达模式分析显示, 该基因在叶片中的表达量最高。PEG模拟干旱条件下, ZmMYB153基因的表达水平显著上升。脱落酸(abscisic acid, ABA)处理条件下, 该基因的表达呈现出先升后降的趋势。通过分析干旱胁迫下不同抗旱强度自交系中ZmMYB153基因的表达量, 发现该基因在强抗旱玉米自交系郑6722 (Z6722)中的表达量显著高于其在中抗旱玉米自交系B73中的表达量。为进一步验证ZmMYB153基因的生物学功能, 利用转基因技术获得该基因的过表达株系。干旱胁迫后, 与野生型(wild type, WT)相比, 过表达ZmMYB153植株(overexpression line-1, OE-1; overexpression line-2, OE-2)具有较高的叶片相对含水量(relative water content, RWC), 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)等氧化酶酶活性, 具有较低的离子渗透率以及丙二醛(malondialdehyde, MDA)含量。通过观察干旱条件下的叶片气孔状态, 发现过表达ZmMYB153株系的气孔闭合程度显著高于WT, 失水率显著低于WT。这些结果表明, ZmMYB153基因具有正向调节玉米响应干旱胁迫的功能。干旱胁迫下的ZmNYB153过表达株系中ABA信号通路相关基因ZmABI1和ZmPYL10的表达水平被显著上调或者下调, 气孔运动相关基因ZmSLAC1的表达量显著高于WT。综上所述, ZmMYB153基因可能通过参与ABA信号途径, 调节叶片气孔活动, 从而影响植物的干旱耐受性。
[1] | 杨丽萍, 李一荻, 丁晓月, 闵菲. 转录因子TCP调控植物生长发育的研究进展. 吉林师范大学学报(自然科学版), 2024, 45(1): 112-116. |
Yang L P, Li Y D, Ding X Y, Min F. Research progress on transcription factor TCP regulate plant growth and development. J Jilin Norm Univ (Nat Sci Edn), 2024, 45(1): 112-116 (in Chinese with English abstract). | |
[2] |
Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553-3558.
doi: 10.1002/j.1460-2075.1987.tb02684.x pmid: 3428265 |
[3] | Tian F, Yang D C, Meng Y Q, Jin J P, Gao G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res, 2020, 48: D1104-D1113. |
[4] | 郭凯, 侯留迪, 张莹莹, 周开明, 张丙林, 邹华文. 植物MYB基因家族研究进展. 长江大学学报(自然科学版), 2020, 17(6): 93-98. |
Guo K, Hou L D, Zhang Y Y, Zhou K M, Zhang B L, Zou H W. Research progress of MYB gene family in plants. J Yangtze Univ (Nat Sci Edn), 2020, 17(6): 93-98 (in Chinese with English abstract). | |
[5] | Liu R D, Shen Y H, Wang M X, Liu R H, Cui Z Q, Li P Z, Wu Q D, Shen Q, Chen J, Zhang S P, et al. GhMYB102 promotes drought resistance by regulating drought-responsive genes and ABA biosynthesis in cotton (Gossypium hirsutum L.). Plant Sci, 2023, 329: 111608. |
[6] | Lee S B, Kim H U, Suh M C. MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol, 2016, 57: 2300-2311. |
[7] | Lee S B, Kim H, Kim R J, Suh M C. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep, 2014, 33: 1535-1546. |
[8] | Sun Y H, Zhao J, Li X Y, Li Y Z. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New Phytol, 2020, 227: 455-472. |
[9] |
Jaradat M R, Allan Feurtado J, Huang D Q, Lu Y Q, Cutler A J. Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biol, 2013, 13: 192.
doi: 10.1186/1471-2229-13-192 pmid: 24286353 |
[10] | Wang X P, Niu Y L, Zheng Y. Multiple functions of MYB transcription factors in abiotic stress responses. Int J Mol Sci, 2021, 22: 6125. |
[11] | Zhou L J, Geng Z Q, Wang Y X, Wang Y G, Liu S H, Chen C W, Song A P, Jiang J F, Chen S M, Chen F D. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in Chrysanthemum. Hortic Res, 2021, 8: 248. |
[12] | Ma Q B, Dai X Y, Xu Y Y, Guo J, Liu Y J, Chen N, Xiao J, Zhang D J, Xu Z H, Zhang X S, et al. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol, 2009, 150: 244-256. |
[13] | Zhang P Y, Wang T C, Cao L R, Jiao Z X, Ku L X, Dou D D, Liu Z X, Fu J X, Xie X W, Zhu Y F, et al. Molecular mechanism analysis of ZmRL6positively regulating drought stress tolerance in maize. Stress Biol, 2023, 3: 47. |
[14] | Zhang G F, Li G D, Xiang Y, Zhang A Y. The transcription factor ZmMYB-CC10 improves drought tolerance by activating ZmAPX4 expression in maize. Biochem Biophys Res Commun, 2022, 604: 1-7. |
[15] |
王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定. 作物学报, 2024, 50: 76-88.
doi: 10.3724/SP.J.1006.2024.33007 |
Wang L P, Wang X Y, Fu J Y, Wang Q. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants. Acta Agron Sin, 2024, 50: 76-88 (in Chinese with English abstract). | |
[16] | 赵小慧, 郁凯, 刘冲, 钟明娟, 贺亭亭, 董静, 王凯, 邢锦城. 玉米叶片原生质体瞬时转化体系的优化. 大麦与谷类科学, 2022, 39(6): 6-10. |
Zhao X H, Yu K, Liu C, Zhong M J, He T T, Dong J, Wang K, Xing J C. Optimization of a transient transformation system for maize leaf protoplasts. Barley Cereal Sci, 2022, 39(6): 6-10 (in Chinese with English abstract). | |
[17] | Parida A K, Dagaonkar V S, Phalak M S, Umalkar G V, Aurangabadkar L P. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep, 2007, 1: 37-48. |
[18] |
张鹤, 敖平星, 赵雁. ALA对高温胁迫下苜蓿属3个品种叶片生理的影响. 草地学报, 2022, 30: 1178-1184.
doi: 10.11733/j.issn.1007-0435.2022.05.019 |
Zhang H, Ao P X, Zhao Y. Effect of 5-aminolevulinic acid on leaf physiology of three cultivars of Medicago under high temperature stress. Acta Agrest Sin, 2022, 30: 1178-1184 (in Chinese with English abstract). | |
[19] | 刘乐, 王文可. 植物叶片扫描电镜样品不同处理与观察方法的研究进展. 广东蚕业, 2021, 55(3): 28-30. |
Liu L, Wang W K. Research progress of different treatment and observation methods of electron microscopy (SEM) samples of plant leaf. Guangdong Seric, 2021, 55(3): 28-30 (in Chinese with English abstract). | |
[20] | Wang A B, Liang K H, Yang S W, Cao Y B, Wang L, Zhang M, Zhou J, Zhang L Y. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress. BMC Genomics, 2021, 22: 565. |
[21] | Zhang J, Zhang Y, Feng C. Genome-wide analysis of MYB genes in Primulina eburnea (hance) and identification of members in response to drought stress. Int J Mol Sci, 2023, 25: 465. |
[22] | Su J C, Zhan N, Cheng X R, Song S L, Dong T Y, Ge X Y, Duan H Y. Genome-wide analysis of cotton MYB transcription factors and the functional Validation of GhMYB in response to drought stress. Plant Cell Physiol, 2024, 65: 79-94. |
[23] | Zhang P Y, Qiu X, Fu J X, Wang G R, Wei L, Wang T C. Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize. Physiol Mol Biol Plants, 2021, 27: 1295-1309. |
[24] | 王浩田, 蒋景龙, 王倩, 魏丽娜, 胡佳. R2R3-MYB转录因子响应植物抗逆机制研究进展. 分子植物育种, 网络首发[2023-08-10], http://kns.cnki.net/kcms/detail/46.1068.S.20230810.1507.012.html. |
Wang H T, Jiang J L, Wang Q, Wei L N, Hu J. Research progress on the mechanism of R2R3-MYB transcription factors in response to plant stress tolerance. Molecular Plant Breeding, Published online [2023-08-10], http://kns.cnki.net/kcms/detail/46.1068.S.20230810.1507.012.html (in Chinese with English abstract). | |
[25] | 周晓馥, 刘美琦, 金妍, 徐洪伟. 玉米MYB转录因子蛋白应答干旱胁迫功能研究. 吉林师范大学学报(自然科学版), 2022, 43(3): 100-111. |
Zhou X F, Liu M Q, Jin Y, Xu H W. Study on the function of Zea mays MYB transcription factor proteins in response to drought stress. J Jilin Norm Univ (Nat Sci Edn), 2022, 43(3): 100-111 (in Chinese with English abstract). | |
[26] | 张鹏钰, 付家旭, 仇晓, 王同朝, 卫丽. 玉米干旱-复水处理差异表达MYB-related基因的鉴定与分析. 农业生物技术学报, 2022, 30(2): 222-235. |
Zhang P Y, Fu J X, Qiu X, Wang T C, Wei L. Identification and analysis of differentially expressed MYB-related genes in maize (Zea mays) under drought stress and rewatering. J Agric Biotechnol, 2022, 30(2): 222-235 (in Chinese with English abstract) | |
[27] |
李春艳, 钟华, 杜利霞, 侯向阳. 白羊草BiMYB52基因的克隆及转基因拟南芥抗旱性表达分析. 草地学报, 2023, 31: 29-39.
doi: 10.11733/j.issn.1007-0435.2023.01.004 |
Li C Y, Zhong H, Du L X, Hou X Y. The cloning BiMYB52 gene from Bothriochloa ischaemum and analysis of drought resistance expression of transgenic Arabidopsis thaliana of that clone. Acta Agrest Sin, 2023, 31: 29-39 (in Chinese with English abstract). | |
[28] | Xu C J, Shan J M, Liu T M, Wang Q, Ji Y J, Zhang Y T, Wang M Y, Xia N, Zhao L. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiol, 2023, 191: 2427-2446. |
[29] | Phan T T, Sun B, Niu J Q, Tan Q L, Li J, Yang L T, Li Y R. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Rep, 2016, 35: 1891-1905. |
[30] | Tang Y H, Bao X X, Zhi Y L, Wu Q A, Guo Y R, Yin X H, Zeng L Q, Li J, Zhang J, He W L, et al. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168. |
[31] | Duan B L, Xie X F, Jiang Y H, Zhu N, Zheng H L, Liu Y X, Hua X J, Zhao Y Y, Sun Y Q. GhMYB44 enhances stomatal closure to confer drought stress tolerance in cotton and Arabidopsis. Plant Physiol Biochem, 2023, 198: 107692. |
[32] |
Xu B, Long Y, Feng X Y, Zhu X J, Sai N, Chirkova L, Betts A, Herrmann J, Edwards E J, Okamoto M, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun, 2021, 12: 1952.
doi: 10.1038/s41467-021-21694-3 pmid: 33782393 |
[33] | Tan Y Q, Yang Y, Shen X, Zhu M J, Shen J L, Zhang W, Hu H H, Wang Y F. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell, 2023, 35: 239-259. |
[34] |
Fan W Q, Zhao M Y, Li S X, Bai X, Li J, Meng H W, Mu Z X. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol, 2016, 16: 99.
doi: 10.1186/s12870-016-0764-x pmid: 27101806 |
[35] | Qi G N, Yao F Y, Ren H M, Sun S J, Tan Y Q, Zhang Z C, Qiu B S, Wang Y F. The S-type anion channel ZmSLAC1 plays essential roles in stomatal closure by mediating nitrate efflux in maize. Plant Cell Physiol, 2018, 59: 614-623. |
[1] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
[2] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[3] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
[4] | 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581. |
[5] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
[6] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
[7] | 蒋雨洲, 王甲, 张宏媛, 冯文豪, 王鹏, 李玉义. 化肥配施有机物料对玉米田土壤细菌和真菌群落结构的影响[J]. 作物学报, 2025, 51(5): 1378-1388. |
[8] | 周科, 陈鹏飞. 耦合多源无人机遥感数据和机器学习方法的玉米SPAD估测[J]. 作物学报, 2025, 51(5): 1389-1399. |
[9] | 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298. |
[10] | 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311. |
[11] | 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214. |
[12] | 李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响[J]. 作物学报, 2025, 51(4): 1091-1101. |
[13] | 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090. |
[14] | 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004. |
[15] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
|