欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1914-1933.doi: 10.3724/SP.J.1006.2025.41067

• 耕作栽培·生理生化 • 上一篇    下一篇

氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响

赵佳雯,李子洪,欧星雨,王伊朗,丁小飞,梁乐瑶,丁文金,张海鹏,马尚宇,樊永惠,黄正来*,张文静*   

  1. 安徽农业大学农学院 / 农业农村部黄淮南部小麦生物学与遗传育种重点实验室, 安徽合肥230036
  • 收稿日期:2024-10-11 修回日期:2025-03-27 接受日期:2025-03-27 出版日期:2025-07-12 网络出版日期:2025-04-01
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD230020203), 安徽省高等学校科学研究重大项目(2023AH040133), 国家重点研发计划项目(2022YFD230140405)和安徽省省级科技特派团项目(23231005)资助。

Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat

ZHAO Jia-Wen,LI Zi-Hong,OU Xing-Yu,WANG Yi-Lang,DING Xiao-Fei,LIANG Yue-Yao,DING Wen-Jin,ZHANG Hai-Peng,MA Shang-Yu,FAN Yong-Hui,HUANG Zheng-Lai*,ZHANG Wen-Jing*   

  1. College of Agriculture, Anhui Agricultural University / Key Laboratory of Wheat Biology and Genetic Breeding in the South of Huang-Huai Rivers, Ministry of Agriculture and Rural Affairs, Hefei 230036, Anhui, China
  • Received:2024-10-11 Revised:2025-03-27 Accepted:2025-03-27 Published:2025-07-12 Published online:2025-04-01
  • Supported by:
    This study was supported by the National Key Research and Development Program (2023YFD230020203), the Major Scientific Research Project of Anhui Provincial Universities and Colleges (2023AH040133), the National Key Research and Development Program (2022YFD230140405), and the Anhui Provincial Science and Technology Special Team (23231005).

摘要:

探究氮肥和钾肥运筹对弱筋小麦产量、品质的影响,为弱筋小麦优质高产提供理论依据。于2022—2024年小麦生长季,以白湖麦1号和皖西麦0638为试验材料,设置4个施氮水平N0 (0 kg hm-2)N10 (150 kg hm-2)N12 (180 kg hm-2)N14 (210 kg hm-2)3个施氮基追比F1 (8︰2)F2 (7︰3)F3 (6︰4);钾肥150 kg hm-2,分为一次性基施(K1)和基追比5︰5 (K2) 2个处理,研究了对弱筋小麦茎蘖动态、干物质积累与转运、氮素积累、产量及其构成要素、籽粒蛋白质含量湿面筋含量的影响。结果表明:氮肥与钾肥运筹显著影响弱筋小麦的生长发育,小麦茎蘖动态、干物质积累与转运、植株氮素积累均随施氮量和追氮比例的增加而增加,相同施氮量和追氮比例下,钾肥追施较一次性基施的茎蘖数、干物质积累量更高,且施氮量、追氮比例和钾肥追施处理对弱筋小麦千粒重、穗粒数、穗数及其产量的影响也显著,随施氮量和追氮比例的增加而增加,在相同施氮量和追氮比例下,钾肥追施较一次性基施的小麦千粒重、穗粒数、穗数及产量更高,而弱筋小麦籽粒蛋白质含量、湿面筋含量随施氮量和追氮比例的增加而增加在符合国家优质弱筋小麦标准的施肥模式中,N12K2F2处理较N12K1F2处理的开花期、成熟期干物质积累量分别均增加7.3%12.3%;花后干物质生产量、花后对籽粒产量贡献率分别均增加19.0%7.7%;氮素积累量平均提高13.5%且N12K2F2处理较N0K2处理的小麦千粒重、穗粒数、穗数、产量分别均增加6.7%86.8%25.1%152.7%,较N12K1F2处理的千粒重、穗粒数、穗数、产量分别均增加1.6%5.5%4.6%12.6%。综上所述,施氮量为180 kg hm-2基追比73钾肥拔节期追施处理是本试验条件下弱筋小麦量质协优的最佳施肥模式。

关键词: 氮肥运筹, 钾肥追施, 弱筋小麦, 产量, 品质

Abstract:

To investigate the effects of nitrogen and potassium fertilizer management on the yield and quality of weak-gluten wheat and to provide a theoretical basis for high-yield, high-quality production, a field experiment was conducted during the wheat growing seasons from 2022 to 2024 using Baihumai 1 and Wanximai 0638 as experimental materials. Four nitrogen application levels were applied: N0 (0 kg hm-2), N10 (150 kg hm-2), N12 (180 kg hm-2), and N14 (210 kg hm-2), along with three basal-to-topdressing nitrogen ratios: F1 (8:2), F2 (7:3), and F3 (6:4). Potassium fertilizer was applied at 150 kg hm-2 with two treatments: a one-time basal application (K1) and a split application with a basal-to-topdressing ratio of 5:5 (K2). The study examined the effects of these treatments on tiller dynamics, dry matter accumulation and translocation, nitrogen accumulation, yield components, grain protein content, and wet gluten content of weak-gluten wheat. The results showed that nitrogen and potassium fertilizer management significantly influenced wheat growth and development. Tiller dynamics, dry matter accumulation and translocation, and plant nitrogen accumulation increased with higher nitrogen application rates and a greater proportion of topdressed nitrogen. Under the same nitrogen application rate and topdressing proportion, potassium topdressing resulted in higher tiller numbers and greater dry matter accumulation compared to a one-time basal application. Additionally, the nitrogen application rate, topdressing proportion, and potassium topdressing significantly affected yield-related traits, including thousand-grain weight, grains per spike, number of spikes, and overall yield, all of which increased with higher nitrogen rates and a greater proportion of topdressed nitrogen. When potassium fertilizer was topdressed rather than applied as a single basal dose, these yield components were further enhanced. Grain protein content and wet gluten content also increased with higher nitrogen application rates and a greater proportion of topdressed nitrogen. Among fertilization treatments that met national standards for high-quality weak-gluten wheat, the N12K2F2 treatment resulted in an average increase of 7.3% and 12.3% in dry matter accumulation at flowering and maturity stages, respectively, compared to N12K1F2. Additionally, post-flowering dry matter production and its contribution to grain yield increased by 19.0% and 7.7%, respectively, while nitrogen accumulation improved by 13.5%. Compared to N0K2, the N12K2F2 treatment increased thousand-grain weight, grains per spike, number of spikes, and yield by 6.7%, 86.8%, 25.1%, and 152.7%, respectively. Relative to N12K1F2, these parameters increased by 1.6%, 5.5%, 4.6%, and 12.6%, respectively. In conclusion, under the experimental conditions, the optimal fertilization strategy for simultaneously improving weak-gluten wheat yield and quality was a nitrogen application rate of 180 kg hm-2, a basal-to-topdressing ratio of 7:3, and topdressed potassium fertilizer at the jointing stage.

Key words: nitrogen fertilizer operation, potassium fertilizer application, weak gluten wheat, yield, quality

[1] Li P F, Ma B L, Guo S, Ding T T, Xiong Y C. Bottom-up redistribution of biomass optimizes energy allocation, water use and yield formation in dryland wheat improvement. J Sci Food Agric, 2022, 102: 33363349.

[2] Tadesse W, Sanchez-Garcia M, Assefa S, Amri A, Bishaw Z, Ogbonnaya F, Baum M. Genetic gains in wheat breeding and its role in feeding the world. Crop Breed Genet Genom, 2019, 1: e190005.

[3] 胡学旭孙丽娟周桂英吴丽娜, 陆伟, 李为喜, 王爽, 杨秀兰, 宋敬可, 王步军. 2006–2015年中国小麦质量年度变化中国农业科学, 2016, 49: 3063–3072.

Hu X X, Sun L J, Zhou G Y, Wu L N, Lu W, Li W X, Wang S, Yang X L, Song J K, Wang B J. Variations of wheat quality in China from 2006 to 2015. Sci Agric Sin, 2016, 49: 30633072 (in Chinese with English abstract).

[4] Duncan E G, O, Sullivan C A, Roper M M, Biggs J S, Peoples M B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertilizer use, grain yield and protein content of wheat: Review. Field Crops Res, 2018, 226: 5665.

[5] Hernández-Ochoa I M, Gaiser T, Hüging H, Ewert F. Yield components and yield quality of old and modern wheat cultivars as affected by cultivar release date, N fertilization and environment in Germany. Field Crops Res, 2023, 302: 109094.

[6] Lu D J, Lu F F, Pan J X, Cui Z L, Zou C Q, Chen X P, He M R, Wang Z L. The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the North China Plain. Field Crops Res, 2015, 171: 157164.

[7] Si Z Y, Zain M, Mehmood F, Wang G S, Gao Y, Duan A W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric Water Manag, 2020, 231: 106002.

[8] Liu M, Wu X L, Li C S, Li M, Xiong T, Tang Y L. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Res, 2020, 248: 107720.

[9] Cho S W, Kang C S, Kang T G, Cho K M, Park C S. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J Integr Agric, 2018, 17: 982993.

[10] Hamani A K M, Abubakar S A, Si Z Y, Kama R, Gao Y, Duan A W. Suitable split nitrogen application increases grain yield and photosynthetic capacity in drip-irrigated winter wheat (Triticum aestivum L.) under different water regimes in the North China Plain. Front Plant Sci, 2023, 13: 1105006.

[11] Garrido-Lestache E, López-Bellido R J, López-Bellido L. Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur J Agron, 2005, 23: 265–278.

[12] Dong S X, Zhang X, Chu J P, Zheng F N, Fei L W, Dai X L, He M R. Optimized seeding rate and nitrogen topdressing ratio for simultaneous improvement of grain yield and bread-making quality in bread wheat sown on different dates. J Sci Food Agric, 2022, 102: 360369.

[13] Jumaboev Z M. Seeding rates, productivity and grain quality indicators of foreign and domestic promising varieties of winter soft wheat. J Glob Agric Ecol, 2022, 14: 17.

[14] Blandino M, Vaccino P, Reyneri A. Late-season nitrogen increases improver common and durum wheat quality. Agron J, 2015, 107: 680690.

[15] Zheng B Q, Jiang J L, Wang L L, Huang M, Zhou Q, Cai J, Wang X, Dai T B, Jiang D. Reducing nitrogen rate and increasing plant density accomplished high yields with satisfied grain quality of soft wheat via modifying the free amino acid supply and storage protein gene expression. J Agric Food Chem, 2022, 70: 21462159.

[16] Hafeez A, Ali S, Ma X L, Tung S A, Shah A N, Liu A D, Ahmed S, Chattha M S, Yang G Z. Potassium to nitrogen ratio favors photosynthesis in late-planted cotton at high planting density. Ind Crops Prod, 2018, 124: 369381.

[17] Hou W F, Xue X X, Li X K, Khan M R, Yan J Y, Ren T, Cong R H, Lu J W. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res, 2019, 236: 1423.

[18] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670681.

[19] Hou W F, Tränkner M, Lu J W, Yan J Y, Huang S Y, Ren T, Cong R H, Li X K. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biol, 2019, 19: 302.

[20] 武际, 郭熙盛, 王允青, 黄晓荣. 钾肥运筹对小麦氮素和钾素吸收利用及产量和品质的影响. 土壤, 2008, 40: 777783.

Wu J, Guo X S, Wang Y Q, Huang X R. Effects of potassium fertilizer operation on the uptake and utilization of nitrogen and potassium, yield and quality of wheat. Soils, 2008, 40: 777–783 (in Chinese with English abstract).

[21] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响. 作物学报, 2021, 47: 22582267.

Hu X H, Gu S B, Zhu J K, Wang D. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields. Acta Agron Sin, 2021, 47: 22582267 (in Chinese with English abstract).

[22] 中华人民共和国国家质量监督检验检疫总局. 小麦品种品质分类: GB/T 17320-2013. 北京: 中国标准出版社, 2013.

State administration for quality supervision, inspection and quarantine of the People’s Republic of China. Classification of quality of wheat varieties: GB/T 17320-2013. Beijing: China Standard Press, 2013 (in Chinese).

[23] Kaur A, Singh N, Kaur S, Ahlawat A K, Singh A M. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars. Food Chem, 2014, 158: 4855.

[24] Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol, 2011, 155: 125–129.

[25] 丁锦峰, 徐东忆, 丁永刚, 朱敏, 李春燕, 朱新开, 郭文善. 栽培模式对稻茬小麦籽粒产量、氮素吸收利用和群体质量的影响. 中国农业科学, 2023, 56: 619-634.

Ding J F, Xu D Y, Ding Y G, Zhu M, Li C Y, Zhu X K, Guo W S. Effects of cultivation patterns on grain yield, nitrogen uptake and utilization, and population quality of wheat under rice-wheat rotation. Sci Agric Sin, 2023, 56: 619–634 (in Chinese with English abstract).

[26] Haque M A, Haque M M. Growth, yield and nitrogen use efficiency of new rice variety under variable nitrogen rates. Am J Plant Sci, 2016, 7: 612–622.

[27] Luo L, Zhang Y L, Xu G H. How does nitrogen shape plant architecture? J Exp Bot, 2020, 71: 4415–4427.

[28] Leyser O. The control of shoot branching: an example of plant information processing. Plant Cell Environ, 2009, 32: 694–703.

[29] Chen L, Qiao Z J, Wang J J, Wang H G, Cao X N, Dong J L. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet. Agric Sci Technol, 2015, 16: 1425–1428.

[30] Xu K, Chai Q, Hu F L, Fan Z L, Yin W. N-fertilizer postponing application improves dry matter translocation and increases system productivity of wheat/maize intercropping. Sci Rep, 2021, 11: 22825.

[31] Carlisle E, Myers S, Raboy V, Bloom A. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Front Plant Sci, 2012, 3: 195.

[32] Ji X H, Zheng S X, Shi L H, Liu Z B. Systematic studies of nitrogen loss from paddy soils through leaching in the Dongting Lake area of China. Pedosphere, 2011, 21: 753762.

[33] Venterea R T, Halvorson A D, Kitchen N, Liebig M A, Cavigelli M A, Del Grosso S J, Motavalli P P, Nelson K A, Spokas K A, Singh B P, Stewart C E, Ranaivoson A, Strock J, Collins H. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Frontiers Ecol & Environ, 2012, 10: 562570.

[34] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响. 作物学报, 2022, 48: 942951.

Li R D, Yin Y Y, Song W W, Wu T T, Sun S, Han T F, Xu C L, Wu C X, Hu S X. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types. Acta Agron Sin, 2022, 48: 942951 (in Chinese with English abstract).

[35] 张翔宇. 钾肥底施和追施比例对冬小麦产量和品质的影响. 山东农业大学硕士学位论文, 山东泰安, 2022.

Zhang X Y. Effect of the ratio of bottom and top application of potassium fertilizer on yield and quality of winter wheat. MS Thesis of Shandong Agricultural University, Taian, Shandong, China, 2022 (in Chinese with English abstract).

[36] Godebo T, Laekemariam F, Loha G. Nutrient uptake, use efficiency and productivity of bread wheat (Triticum aestivum L.) as affected by nitrogen and potassium fertilizer in Keddida Gamela Woreda, Southern Ethiopia. Environ Syst Res, 2021, 10: 12.

[37] Guo J X, Jia Y M, Chen H H, Zhang L J, Yang J C, Zhang J, Hu X Y, Ye X, Li Y, Zhou Y. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci Rep, 2019, 9: 1248.

[38] Chen Y L, Xiao C X, Wu D L, Xia T T, Chen Q W, Chen F J, Yuan L X, Mi G H. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. Eur J Agron, 2015, 62: 79–89.

[39] Yu X R, Chen X Y, Wang L L, Yang Y, Zhu X W, Shao S S, Cui W X, Xiong F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. J Exp Bot, 2017, 68: 2259–2274.

[40] De Santis M A, Giuliani M M, Flagella Z, Reyneri A, Blandino M. Impact of nitrogen fertilisation strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Res, 2020, 254: 107829.

[41] Asseng S, Ewert F, Rosenzweig C, Jones J W, Hatfield J L, Ruane A C, Boote K J, Thorburn P J, Rötter R P, Cammarano D, Brisson N, et al. Uncertainty in simulating wheat yields under climate change. Nature Clim Change, 2013, 3: 827832.

[42] Zheng B Q, Fang Q, Zhang C X, Mahmood H, Zhou Q, Li W Y, Li X N, Cai J, Wang X, Zhong Y X, et al. Reducing nitrogen rate and increasing plant density benefit processing quality by modifying the spatial distribution of protein bodies and gluten proteins in endosperm of a soft wheat cultivar. Field Crops Res, 2020, 253: 107831.

[43] Zörb C, Ludewig U, Hawkesford M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018, 23: 10291037.

[44] Staugaitis G, Poškus K, Brazienė Z, Avižienytė D. Effect of sulphur and nitrogen fertilisation on winter wheat in Calcaric Luvisol. Zemdirbyste-Agriculture, 2022, 109: 211218.

[45] Wang J, Qiu Y Y, Zhang X Y, Zhou Z, Han X, Zhou Y, Qin L, Liu K, Li S Y, Wang W L, et al. Increasing basal nitrogen fertilizer rate improves grain yield, quality and 2-acetyl-1-pyrroline in rice under wheat straw returning. Front Plant Sci, 2023, 13: 1099751.

[46] Hawkesford M J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci, 2014, 59: 276–283.

[47] Barneix A J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol, 2007, 164: 581–590.

[48] Zhen S M, Zhou J X, Deng X, Zhu G R, Cao H, Wang Z M, Yan Y M. Metabolite profiling of the response to high-nitrogen fertilizer during grain development of bread wheat (Triticum aestivum L.). J Cereal Sci, 2016, 69: 8594.

[49] Zhang X Q, Xu Y J, Du S Z, Qiao Y Q, Cao C F, Chen H. Optimized N application improves N absorption, population dynamics, and ear fruiting traits of wheat. Front Plant Sci, 2023, 14: 1199168.

[50] 朱新开, 郭文善, 周君良, 胡宏, 张影, 李春燕, 封超年, 彭永欣. 氮素对不同类型专用小麦营养和加工品质调控效应. 中国农业科学, 2003, 36: 640645.

Zhu X K, Guo W S, Zhou J L, Hu H, Zhang Y, Li C Y, Feng C N, Peng Y X. Effects of nitrogen on grain yield. Nutritional quality and processing quality of wheat for different end uses. Sci Agric Sin, 2003, 36: 640-645(in Chinese).

[51] Wu H Y, Wang Z J, Zhang X, Wang J C, Hu W J, Wang H, Gao D R, Souza E, Cheng S H. Effects of different fertilizer treatments, environment and varieties on the yield-, grain-, flour-, and dough-related traits and cookie quality of weak-gluten wheat. Plants, 2022, 11: 3370.

[52] Daaloul Bouacha O, Nouaigui S, Rezgui S. Effects of N and K fertilizers on durum wheat quality in different environments. J Cereal Sci, 2014, 59: 914.

[1] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[2] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[3] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[4] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[5] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[6] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[7] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[8] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[9] 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466.
[10] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
[11] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[12] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
[13] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[14] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[15] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .