欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1901-1913.doi: 10.3724/SP.J.1006.2025.51006

• 耕作栽培·生理生化 • 上一篇    下一篇

秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响

陈如雪1,**,孙丽芳1,4,**,张芯源1,牟海萌1,张永新1,袁丽雪1,彭仕乐1,王壮壮3,王永华1,2,*   

  1. 1河南农业大学农学院 / 国家小麦工程技术研究中心, 河南郑州 450046; 2小麦玉米两熟高效生产全国重点实验室, 河南郑州 450046; 3河南农业大学资源与环境学院, 河南郑州 450046; 4河南迈向丰农业科技有限公司, 河南孟州 454750
  • 收稿日期:2025-01-13 修回日期:2025-04-25 接受日期:2025-04-25 出版日期:2025-07-12 网络出版日期:2025-05-13
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD2300204)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03)资助。

Effects of combined straw returning and microbial inoculant application on carbon­nitrogen metabolism in flag leaves and yield formation in winter wheat

CHEN Ru-Xue1,**,SUN Li-Fang1,4,**,ZHANG Xin-Yuan1,MU Hai-Meng1,ZHANG Yong-Xin1,YUAN Li-Xue1,PENG Shi-Le1,WANG Zhuang-Zhuang3,WANG Yong-Hua1,2,*   

  1. 1 College of Agronomy, Henan Agricultural University / National Engineering Research Centre for Wheat, Zhengzhou 450046, Henan, China; 2 State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Zhengzhou 450046, Henan, China; 3 College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, Henan, China; 4 Henan Maixiangfeng Agricultural Science and Technology Co., Ltd., Mengzhou 454750, Henan, China
  • Received:2025-01-13 Revised:2025-04-25 Accepted:2025-04-25 Published:2025-07-12 Published online:2025-05-13
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFD2300204) and the China Agriculture Research System of MOF and MARA (CARS-03).

摘要:

探究秸秆还田与微生物菌剂配施对冬小麦碳氮代谢、干物质生产及籽粒产量的影响及其相互关系,旨在阐明对冬小麦产量的调控效应,为冬小麦绿色高产栽培提供技术支撑和参考依据。于2021—2023年连续2年设置微耕机旋耕掩埋秸秆还田(T1)、秸秆配施商品微生物菌剂+微耕机旋耕掩埋还田(T2)、秸秆配施真菌-细菌复合微生物菌剂(侧孢短杆菌WPL-3、黑曲霉BLH-22哈茨木霉GZX-3)+微耕机旋耕掩埋还田(T3)和秸秆不还田(CK) 4处理池栽对比试验,重点研究对冬小麦碳氮代谢、干物质生产及产量的影响。秸秆还田和微生物菌剂配施处理组合均能提高冬小麦产量,优化产量构成因素。T3处理平均产量最高,较T2T1CK分别提高5.47%10.41%15.27%,穗粒数和千粒重均显著高于CKT1CKT1处理相比,T3处理开花及花后碳代谢SPSSS酶活性氮代谢NRGS酶活性均显著提高,成熟期干物质积累总量和籽粒干重亦显著增加。秸秆还田协同真菌-细菌复合微生物菌剂(T3)处理显著提高冬小麦产量,其多途径调控机制主要是哈茨木霉-侧孢短杆菌协同调控,加速秸秆腐解,提升碳氮代谢关键酶活性(T2相比,酶活性呈提高趋势但差异未达显著水平),优化冬小麦--动态关系,强化籽粒灌浆物质基础,促使花后干物质向籽粒转移效率提高18.4%(T2相比转移效率提升3.1个百分点)最终产量较T2处理显著提高5.47%。因此,相较于商品菌剂处理(T2)秸秆还田协同真菌-细菌复合微生物菌剂(T3)处理可作为黄淮南部冬小麦绿色高产栽培的可靠技术方案。

关键词: 秸秆还田, 干物质生产, 碳氮代谢, 产量形成, 冬小麦, 微生物菌剂

Abstract:

The study investigated the effects of combined application of straw returning and microbial inoculants on carbon-nitrogen metabolism, dry matter accumulation, and grain yield in winter wheat, aiming to elucidate their regulatory mechanisms on yield formation and provide technical support for green high-yield cultivation. A two-year (2021–2023) comparative experiment with four treatments was conducted: micro-tiller rotary burial for straw returning (T1), T1 combined with commercial microbial inoculants (T2), T1 combined with a fungi-bacteria complex inoculant (containing Brevibacillus laterosporus WPL-3, Aspergillus niger BLH-22, and Trichoderma harzianum GZX-3) (T3), and no straw returning (CK). The key findings were: All straw-returning treatments improved yield components, with T3 showing the highest average yield (5.47%, 10.41%, and 15.27% higher than T2, T1, and CK, respectively) and significantly superior spike grain number and 1,000-grain weight over CK and T1. Compared to CK and T1, T3 significantly enhanced key enzyme activities (sucrose phosphate synthase [SPS], sucrose synthase [SS], nitrate reductase [NR], glutamine synthetase [GS]) during flowering and post-flowering stages, alongside increased total dry matter accumulation and grain weight at maturity. Mechanistically, T3 achieved synergistic effects through Trichoderma harzianum-Brevibacillus laterosporus co-regulation, accelerating straw decomposition, elevating carbon-nitrogen metabolic enzyme activities (showing an increasing trend compared to T2, though not statistically significant), optimizing “source-flow-sink” dynamics, strengthening grain filling material basis, and improving post-flowering dry matter translocation efficiency by 18.4% (a 3.1-percentage-points increase compared to T2). Collectively, these effects contributed to a 5.47% significant yield increase over T2. Therefore, compared with the commercial inoculant treatment (T2), T3 (straw returning combined with fungi-bacteria complex inoculant) is recommended as a reliable technical solution for green and high-yield winter wheat cultivation in the southern Huang-Huai region.

Key words: straw returning, dry matter production, carbon and nitrogen metabolism, yield formation, winter wheat, microbial inoculants

[1] Guo Z Y, Liu Y, Meng X P, Yang X N, Ma C, Chai H N, Li H, Ding R X, Nazarov K, Zhang X D, et al. The long-term nitrogen fertilizer management strategy based on straw return can improve the productivity of wheat-maize rotation system and reduce carbon emissions by increasing soil carbon and nitrogen sequestration. Field Crops Res, 2024, 317: 109561.

[2] 孙轶萱, 李建峰, 胡文河, 谷岩, 郭巍, 张楠, . 秸秆还田方式下黑钙土土壤碳氮磷钾化学计量特征研究. 玉米科学, 2023, 31(6): 75–81.
Sun Y X, Li J F, Hu W H, Gu Y, Guo W, Zhang N, Mei N. Study on the chemical stoichiometric characteristics of chernozem soil under different straw returning methods. J Maize Sci, 2023, 31(6): 75–81 (in Chinese with English abstract).

[3] Wang Y W, Qin M G, Zhan M, Liu T Q, Yuan J Z. Straw return-enhanced soil carbon and nitrogen fractions and nitrogen use efficiency in a maize–rice rotation system. Exp Agric, 2024, 60: e5.

[4] Han J X, Song X Y, Fu H Y, Liu C G, Yang F S. Effects of the decomposition agent application on the physicochemical properties and microbial community structure of wheat straw-returning soil. Environ Technol Innov, 2024, 35: 103668.

[5] Nannipieri P, Angst G, Mueller C, Pietramellara G. The role of death and lysis of microbial and plant cells in the formation of soil organic matter. Soil Biol Biochem, 2025, 204: 109750.

[6] Gong H R, Li J, Ma J H, Li F D, Ou-Yang Z, Gu C K. Effects of tillage practices and microbial agent applications on dry matter accumulation, yield and the soil microbial index of winter wheat in North China. Soil Tillage Res, 2018, 184: 235–242.

[7] 朱远芃, 金梦灿, 马超, 广敏, 高敏, 郜红建. 外源氮肥和腐熟剂对小麦秸秆腐解的影响. 生态环境学报, 2019, 28: 612–619.
Zhu Y P, Jin M C, Ma C, Guang M, Gao M, Gao H J. Impacts of exogenous nitrogen and effective microorganism on the decomposition of wheat straw residues. Ecol Environ Sci, 2019, 28: 612–619 (in Chinese with English abstract). 

[8] Gao X Y, Liu W Z, Li X Q, Zhang W Z, Bu S L, Wang A J. A novel fungal agent for straw returning to enhance straw decomposition and nutrients release. Environ Technol Innov, 2023, 30: 103064.

[9] Bugg T D H, Ahmad M, Hardiman E M, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep, 2011, 28: 1883–1896.

[10] 李含芬, 马春晖, 王永章, 沈春燕, 屈海泳. 哈茨木霉菌对小麦秸秆降解作用的研究. 中国农学通报, 2016, 32(3): 120–123.
Li H F, Ma C H, Wang Y Z, Shen C Y, Qu H Y. Effects of Trichoderma harzianum on wheat straw degradation. Chin Agric Sci Bull, 2016, 32(3): 120–123 (in Chinese with English abstract).

[11] Wang L Y, Wang T F, Xing Z J, Zhang Q F, Niu X H, Yu Y S, Teng Z J, Chen J X. Enhanced lignocellulose degradation and composts fertility of cattle manure and wheat straw composting by Bacillus inoculation. J Environ Chem Eng, 2023, 11: 109940.

[12] 刘洁. 冬季秸秆直接还田对土壤特性和水稻生长的影响. 天津科技大学硕士学位论文, 天津, 2022.
Liu J. Effects of Straw Returning Directly to Field in Winter on Soil Characteristics and Rice Growth. MS Thesis of Tianjin University of Science & Technology, Tianjin, China, 2022 (in Chinese with English abstract).

[13] Zhao B H, Dong W J, Chen Z L, Zhao X, Cai Z J, Feng J J, Li S J, Sun X Y. Microbial inoculation accelerates rice straw decomposition by reshaping structure and function of lignocellulose-degrading microbial consortia in paddy fields. Bioresour Technol, 2024, 413: 131545.

[14] Li Y, Abalos D, Arthur E, Feng H, Siddique K H M, Chen J. Different straw return methods have divergent effects on winter wheat yield, yield stability, and soil structural properties. Soil Tillage Res, 2024, 238: 105992.

[15] Mo F, Yang D Y, Wang X K, Crowther T W, Vinay N, Luo Z K, Yu K L, Sun S K, Zhang F, Xiong Y C, et al. Nutrient limitation of soil organic carbon stocks under straw return. Soil Biol Biochem, 2024, 192: 109360.

[16] Wang K K, Ren T, Cong R H, Lu Z F, Li X K, Lu J W. Reduction of chemical phosphate fertilizer application in a rice–rapeseed cropping system through continuous straw return. Field Crops Res, 2024, 312: 109399.

[17] 晓霞, 尹维松, 叶云鹏. 不同秸秆还田方式对小麦生长发育及赤霉病的发生影响研究. 安徽农学通报, 2023, 29(12): 9093.
Feng X X, Yin W S, Ye Y P. Effects of different straw incorporation practices on wheat growth and development and Fusarium Head Blight occurrence. Anhui Agric Sci Bull, 2023, 29(12): 90–93 (in Chinese).

[18] 郭新送, 刘同信, 洪丕征, 高涵, 靖吉越, 丁方军. 施用有机物料腐熟剂对秸秆还田小麦产量和土壤化学性状的影响. 浙江农业科学, 2025, 66: 4450.
Guo X S, Liu T X, Hong P Z, Gao H, Jing J Y, Ding F J. Effect of applying organic material decomposing agent on wheat yield and soil chemical properties after returning straw to field. J Zhejiang Agric Sci, 2025, 66: 4450 (in Chinese with English abstract).

[19] 魏萌涵, 孟自力. 化肥减量下耕作方式和施用秸秆腐熟剂对小麦产量和土壤养分的影响. 江苏农业科学, 2022, 50(15): 68–73.
Wei M H, Meng Z L. Effects of tillage methods and application of straw ripening agent on wheat yield and soil nutrients under nitrogen reduction. Jiangsu Agric Sci, 2022, 50(15): 68–73 (in Chinese with English abstract).

[20] Wu Q, Zhang Y X, Zhao L, Wei Z M, Song C H, Pang C L, Pang X J. Strategies for efficient degradation of lignocellulose from straw: Synergistic effects of acid-base pretreatment and functional microbial agents in composting. Chem Eng J, 2025, 508: 161048.

[21] 易军, 符慧娟, 李星月, 李其勇, 张鸿. 种衣剂减量下增施菌剂和肥料对小麦光合、产量、蚜虫及白粉病防控的影响. 麦类作物学报, 2024, 44: 675–684.
Yi J, Fu H J, Li X Y, Li Q Y, Zhang H. Effects of bacterial agents and fertilizers on wheat under the reduction of seed coating agent. J Triticeae Crops, 2024, 44: 675–684 (in Chinese with English abstract).

[22] Ji D C, Ge L W, Van Zwieten L, An T T, Li S Y, Kuzyakov Y, Ding F, Wang J K. Contrasting effects of maize straw and its biochar on aggregation and soil organic matter stabilization. Plant Soil, 2024, 495: 221–233.

[23] 车林, 林之栋, 赵乐, 周煜博, 万雪洁, 师长海, 刘义国. 秸秆还田和不同耕作方式对旱地小麦花后旗叶衰老及产量的影响. 青岛农业大学学报(自然科学版), 2023, 40(3): 159–165.
Che L, Lin Z D, Zhao L, Zhou Y B, Wan X J, Shi C H, Liu Y G. Effects of straw return and different tillage practices on post-flowering flag leaf senescence and yield of dryland wheat. J Qingdao Agric Univ (Nat Sci), 2023, 40(3): 159–165 (in Chinese with English abstract).

[24] Duan J Z, Shao Y H, He L, Li X, Hou G G, Li S N, Feng W, Zhu Y J, Wang Y H, Xie Y X. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci Total Environ, 2019, 697: 134088.

[25] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响. 作物学报, 2025, 51: 534–547.
Wang P B, Zhang D X, Qiao C C, Huang M, Wang H Z. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in Western Henan dryland. Acta Agron Sin, 2025, 51: 534–547 (in Chinese with English abstract).

[26] Doehlert D C, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol, 1988, 86: 1013–1019.

[27] 王小纯, 熊淑萍, 马新明, 张娟娟, 王志强. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25: 802–807.
Wang X C, Xiong S P, Ma X M, Zhang J J, Wang Z Q. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars. Acta Ecol Sin, 2005, 25: 802–807 (in Chinese with English abstract).

[28] 武丽, 张西仲, 唐兴贵, 罗倩茜, 李余湘, 左业华, 叶文玲. 钼胁迫对烟草含钼酶和碳氮代谢关键酶的影响. 核农学报, 2015, 29: 23852393.
Wu L, Zhang X Z, Tang X G, Luo Q Q, Li Y X, Zuo Y H, Ye W L. Effects on molybdenum enzymes and carbon/nitrogen metabolism enzymes of tobacco under molybdenum stress. J Nucl Agric Sci, 2015, 29: 2385–2393 (in Chinese with English abstract).

[29] Cesarini M, Petrucci A, Hotaj E, Venturini G, Liguori R, Sarrocco S. Use in a controlled environment of Trichoderma asperellum ICC012 and Trichoderma gamsii ICC080 to manage FHB on common wheat. Microbiol Res, 2025, 290: 127941.

[30] Salem A, Khandaker M M, Mahmud K, Alsufyani S J, Majrashi A A, Rashid Z M, Alenazi M M, Osman N, Badaluddin N A. Enhancing photosynthesis and root development for better fruit quality, aroma, and lessening of radioactive materials in key lime (Citrus aurantifolia) using Trichoderma harzianum and Bacillus thuringiensis. Plant Physiol Biochem, 2024, 206: 108295.

[31] 李刘霞. 氮磷钾配施对砂姜黑土冬小麦干物质生产、养分吸收利用及土壤酶活性的影响. 河南农业大学硕士学位论文, 河南郑州, 2014.
Li L X. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Dry Matter Production, Nutrient Absorption and Utilization and Soil Enzyme Activity of Winter Wheat in Shajiang Black Soil. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2014 (in Chinese with English abstract).

[32] 王壮壮. 施氮量和种植密度对冬小麦根系形态分布特征与氮素利用效率及产量的影响. 河南农业大学硕士学位论文, 河南郑州, 2022.
Wang Z Z. Effects of Nitrogen Application Rate and Planting Density on Root Morphological Distribution Characteristics, Nitrogen Use Efficiency and Yield of Winter Wheat. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2022 (in Chinese with English abstract).

[33] Liu F Y, Gao M L, Zhang H Z, Yuan H B, Hu B, Zong R, Zhang M M, Ma Y Z, Li Q Q. Synergistic impact of various straw-return methods and irrigation regimes on winter wheat physiological growth and yield. Field Crops Res, 2024, 316: 109516. 

[34] Kashyap A S, Manzar N. Molecular characterization and biocontrol potential of rhizospheric Trichoderma and Bacillus spp. from Indo-Gangetic plains with botanical applications against Bipolaris sorokiniana in wheat. Physiol Mol Plant Pathol, 2025, 136: 102567.

[35] 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响. 中国农业科学, 2023, 56: 12831294.
Wang P F, Yu A Z, Wang Y L, Su X X, Li Y, Lyu H Q, Chai J, Yang H W. Effects of returning green manure to field combined with reducing nitrogen application on the dry matter accumulation, distribution and yield of maize. Sci Agric Sin, 2023, 56: 1283–1294 (in Chinese with English abstract).

[36] 梁淼, 李盼, 赵连豪, 樊志龙, 范虹, 何蔚, 柴强. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响. 作物学报, 2025, 51: 470–484.
Liang M, Li P, Zhao L H, Fan Z L, Fan H, He W, Chai Q. Effects of soil conditioner and slow-release nitrogen fertilizer on dry matter accumulation and yield of wheat. Acta Agron Sin, 2025, 51: 470–484 (in Chinese with English abstract).

[37] 丁怡梦, 陈慕琪, 丁文锐, 任清铭, 沈文远, 刘大同, 陆成彬, 熊飞. 谷类作物碳氮代谢互作机制的研究进展. 植物生理学报, 2024, 60: 753761.
Ding Y M, Chen M Q, Ding W R, Ren Q M, Shen W Y, Liu D T, Lu C B, Xiong F. Research advances on the carbon-nitrogen metabolic interaction mechanisms in cereal crops. Plant Physiol J, 2024, 60: 753–761 (in Chinese with English abstract).

[38] Li P, Yin W, Fan Z L, Hu F L, Zhao L H, Fan H, He W, Chai Q. Improving crop productivity by optimizing straw returning patterns to delay senescence of wheat leaves. Eur J Agron, 2024, 159: 127274.

[39] Moreno-Lora A, Velasco-Sánchez Á, Delgado A. Effects of microbial inoculants and organic amendments on wheat nutrition and development in a variety of soils. J Soil Sci Plant Nutr, 2023, 23: 3329–3342.

[40] 屈魏蕾, 田玉磊, 井方宇, 孙婷婷, 张蓓蓓. 微生物菌剂对干旱胁迫下小麦生长生理和叶绿素荧光参数的影响研究. 江西农业学报, 2022, 34(10): 3037.
Qu W L, Tian Y L, Jing F Y, Sun T T, Zhang B B. Effects of microbial agents on growth, physiology and chlorophyll fluorescence parameters of wheat under drought stress. Acta Agric Jiangxi, 2022, 34(10): 30–37 (in Chinese with English abstract).

[41] 李磊, 陈守保, 孙小玉, 甄静, 李冠杰, 岳丹丹, 宁萌, 慕琦, 杨金星, 陈国参, . 新型快速秸秆还田促腐菌剂对小麦秸秆还田在水稻田的施用剂量评价. 农学学报, 2021, 11(11): 15.
Li L, Chen S B, Sun X Y, Zhen J, Li G J, Yue D D, Ning M, Mu Q, Yang J X, Chen G C, et al. Application dose of new microbial inoculants on wheat straw decomposition: an evaluation in paddy field. J Agric, 2021, 11(11): 1–5 (in Chinese with English abstract).

[42] 陈娟, 易婷, 叶英林, 张西露. 秸秆腐熟剂的研究进展及发展趋势. 湖南农业科学, 2021, (2): 108–110.
Chen J, Yi T, Ye Y L, Zhang X L. Research progress and development trend of straw decomposing agent. Hunan Agric Sci, 2021, (2): 108–110 (in Chinese with English abstract).

[43] 周淑霞, 于建光, 赵莉, 王丹丹, 常志州, 杨四军. 不同有机物料腐熟剂对麦秸的腐解效果. 江苏农业科学, 2013, 41(11): 347–350.
Zhou S X, Yu J G, Zhao L, Wang D D, Chang Z Z, Yang S J. Decomposition effect of different organic materials on wheat straw. Jiangsu Agric Sci, 2013, 41(11): 347–350 (in Chinese).

[44] Zhou L Y, Xie Y Q, Wang X W, Li P B, Liu Y Y, Wang Z F, Dai J P, Zhang H T, Yang X P. Influence of different microbial inoculants on nitrogen retention and diazotroph community succession during cotton straw composting. Process Saf Environ Prot, 2023, 172: 882–893. 

[45] 胡宇容, 陈留根, 郭智, 周炜, 朱普平. 秸秆腐解剂对秸腐解速率及水稻产量的影响. 江苏农业科学, 2017, 45(4): 41–44.
Hu Y R, Chen L G, Guo Z, Zhou W, Zhu P P. Effects of straw decomposition agents on straw decomposition rate and rice yield. Jiangsu Agric Sci, 2017, 45(4): 41–44 (in Chinese).

[46] Peng X Y, Bai Q X, Chen G H, Yu X J, Zhang X H. Mechanism of Bacillus cooperating with silicon to re-balance chlorophyll metabolism and restore carbon metabolism of Glycyrrhiza uralensis Fisch. Seedlings exposed to salt-drought stress. Plant Physiol Biochem, 2025, 219: 109337.

[47] Liu Y C, Yue Z H, Sun Z K, Li C W. Harnessing native Bacillus spp. for sustainable wheat production. Appl Environ Microbiol, 2023, 89: e0124722. 

[1] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[2] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
[3] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[4] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[5] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[6] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[7] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[8] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[9] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[10] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[11] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[12] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[13] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[14] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[15] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .