欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1914-1933.doi: 10.3724/SP.J.1006.2025.41067

所属专题: 小麦:耕作栽培·生理生化

• 耕作栽培·生理生化 • 上一篇    下一篇

氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响

赵佳雯(), 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来(), 张文静()   

  1. 安徽农业大学农学院 / 农业农村部黄淮南部小麦生物学与遗传育种重点实验室, 安徽合肥 230036
  • 收稿日期:2024-10-11 接受日期:2025-03-27 出版日期:2025-07-12 网络出版日期:2025-04-01
  • 通讯作者: *黄正来, E-mail: xdnyyjs@163.com; 张文静, E-mail: zhangwenjing79@126.com
  • 作者简介:E-mail: zhaojiawen09@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFD230020203);国家重点研发计划项目(2022YFD230140405);安徽省高等学校科学研究重大项目(2023AH040133);安徽省省级科技特派团项目(23231005)

Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat

ZHAO Jia-Wen(), LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai(), ZHANG Wen-Jing()   

  1. College of Agriculture, Anhui Agricultural University / Key Laboratory of Wheat Biology and Genetic Breeding in the South of Huang-Huai Rivers, Ministry of Agriculture and Rural Affairs, Hefei 230036, Anhui, China
  • Received:2024-10-11 Accepted:2025-03-27 Published:2025-07-12 Published online:2025-04-01
  • Contact: *E-mail: xdnyyjs@163.com; E-mail: zhangwenjing79@126.com
  • Supported by:
    National Key Research and Development Program(2023YFD230020203);National Key Research and Development Program(2022YFD230140405);Major Scientific Research Project of Anhui Provincial Universities and Colleges(2023AH040133);Anhui Provincial Science and Technology Special Team(23231005)

摘要: 探究氮肥和钾肥运筹对弱筋小麦产量、品质的影响, 为弱筋小麦优质高产提供理论依据。于2022—2024年小麦生长季, 以白湖麦1号和皖西麦0638为试验材料, 设置4个施氮水平N0 (0 kg hm-2)、N10 (150 kg hm-2)、N12 (180 kg hm-2)、N14 (210 kg hm-2), 3个施氮基追比F1 (8︰2)、F2 (7︰3)、F3 (6︰4); 钾肥150 kg hm-2, 分为一次性基施(K1)和基追比5︰5 (K2) 2个处理, 研究了对弱筋小麦茎蘖动态、干物质积累与转运、氮素积累、产量及其构成要素、籽粒蛋白质含量和湿面筋含量的影响。结果表明: 氮肥与钾肥运筹显著影响弱筋小麦的生长发育, 小麦茎蘖动态、干物质积累与转运、植株氮素积累均随施氮量和追氮比例的增加而增加, 相同施氮量和追氮比例下, 钾肥追施较一次性基施的茎蘖数、干物质积累量更高, 且施氮量、追氮比例和钾肥追施处理对弱筋小麦千粒重、穗粒数、穗数及其产量的影响也显著, 随施氮量和追氮比例的增加而增加, 在相同施氮量和追氮比例下, 钾肥追施较一次性基施的小麦千粒重、穗粒数、穗数及产量更高, 而弱筋小麦籽粒蛋白质含量、湿面筋含量也随施氮量和追氮比例的增加而增加。在符合国家优质弱筋小麦标准的施肥模式中, N12K2F2处理较N12K1F2处理的开花期、成熟期干物质积累量分别平均增加7.3%、12.3%; 花后干物质生产量、花后对籽粒产量贡献率分别平均增加19.0%、7.7%; 氮素积累量平均提高13.5%; 且N12K2F2处理较N0K2处理的小麦千粒重、穗粒数、穗数、产量分别平均增加6.7%、86.8%、25.1%、152.7%, 较N12K1F2处理的千粒重、穗粒数、穗数、产量分别平均增加1.6%、5.5%、4.6%、12.6%。综上所述, 施氮量为180 kg hm-2、基追比7︰3、钾肥拔节期追施处理是本试验条件下弱筋小麦量质协优的最佳施肥模式。

关键词: 氮肥运筹, 钾肥追施, 弱筋小麦, 产量, 品质

Abstract:

To investigate the effects of nitrogen and potassium fertilizer management on the yield and quality of weak-gluten wheat and to provide a theoretical basis for high-yield, high-quality production, a field experiment was conducted during the wheat growing seasons from 2022 to 2024 using Baihumai 1 and Wanximai 0638 as experimental materials. Four nitrogen application levels were applied: N0 (0 kg hm-2), N10 (150 kg hm-2), N12 (180 kg hm-2), and N14 (210 kg hm-2), along with three basal-to-topdressing nitrogen ratios: F1 (8:2), F2 (7:3), and F3 (6:4). Potassium fertilizer was applied at 150 kg hm-2 with two treatments: a one-time basal application (K1) and a split application with a basal-to-topdressing ratio of 5:5 (K2). The study examined the effects of these treatments on tiller dynamics, dry matter accumulation and translocation, nitrogen accumulation, yield components, grain protein content, and wet gluten content of weak-gluten wheat. The results showed that nitrogen and potassium fertilizer management significantly influenced wheat growth and development. Tiller dynamics, dry matter accumulation and translocation, and plant nitrogen accumulation increased with higher nitrogen application rates and a greater proportion of topdressed nitrogen. Under the same nitrogen application rate and topdressing proportion, potassium topdressing resulted in higher tiller numbers and greater dry matter accumulation compared to a one-time basal application. Additionally, the nitrogen application rate, topdressing proportion, and potassium topdressing significantly affected yield-related traits, including thousand-grain weight, grains per spike, number of spikes, and overall yield, all of which increased with higher nitrogen rates and a greater proportion of topdressed nitrogen. When potassium fertilizer was topdressed rather than applied as a single basal dose, these yield components were further enhanced. Grain protein content and wet gluten content also increased with higher nitrogen application rates and a greater proportion of topdressed nitrogen. Among fertilization treatments that met national standards for high-quality weak-gluten wheat, the N12K2F2 treatment resulted in an average increase of 7.3% and 12.3% in dry matter accumulation at flowering and maturity stages, respectively, compared to N12K1F2. Additionally, post-flowering dry matter production and its contribution to grain yield increased by 19.0% and 7.7%, respectively, while nitrogen accumulation improved by 13.5%. Compared to N0K2, the N12K2F2 treatment increased thousand-grain weight, grains per spike, number of spikes, and yield by 6.7%, 86.8%, 25.1%, and 152.7%, respectively. Relative to N12K1F2, these parameters increased by 1.6%, 5.5%, 4.6%, and 12.6%, respectively. In conclusion, under the experimental conditions, the optimal fertilization strategy for simultaneously improving weak-gluten wheat yield and quality was a nitrogen application rate of 180 kg hm-2, a basal-to-topdressing ratio of 7:3, and topdressed potassium fertilizer at the jointing stage.

Key words: nitrogen fertilizer operation, potassium fertilizer application, weak gluten wheat, yield, quality

图1

小麦生育期平均降雨量及平均气温"

表1

氮肥与钾肥运筹对弱筋小麦茎蘖动态、干物质积累、氮素积累影响的方差分析"

年份
Year
处理
Treatment
白湖麦1号 BHM 1
茎蘖动态
Dynamics of tillering
干物质积累
Dry matter accumulation
氮素积累
Nitrogen accumulation
(kg hm-2)
拔节期
Jointing stage
开花期
Anthesis stage
成熟期
Maturing stage
拔节期
Jointing stage
开花期
Anthesis stage
成熟期
Maturing stage
2022-2023 施氮量N level (N) ** ** ** ** ** ** **
追氮比例N topdressing ratio (F) ** NS ** ** ** ** **
钾肥追施Potassium top dressing (K) ** NS NS ** ** ** **
N×F NS NS NS ** * ** **
N×K NS NS NS ** NS ** **
K×F NS NS NS NS NS NS **
N×K×F NS NS NS NS NS * **
2023-2024 施氮量N level (N) ** ** ** ** ** ** **
追氮比例N topdressing ratio (F) NS * ** ** ** ** **
钾肥追施Potassium top dressing (K) NS NS * ** ** ** **
N×F NS NS NS ** NS ** **
N×K NS NS NS ** NS NS *
K×F NS NS NS ** NS NS *
N×K×F NS NS NS NS NS NS NS
年份
Year
处理
Treatment
皖西麦0638 WXM 0638
茎蘖动态
Dynamics of tillering
干物质积累
Dry matter accumulation
氮素积累
Nitrogen accumulation
(kg hm-2)
拔节期
Jointing stage
开花期
Anthesis stage
成熟期
Maturing stage
拔节期
Jointing stage
开花期
Anthesis stage
成熟期
Maturing stage
2022-2023 施氮量N level (N) ** ** ** ** ** ** **
追氮比例N topdressing ratio (F) * * ** ** ** ** **
钾肥追施Potassium top dressing (K) * * * ** ** ** **
N×F NS NS NS ** NS ** **
N×K NS NS NS NS NS NS **
K×F NS NS NS NS NS NS **
N×K×F NS NS NS NS NS NS **
2023-2024 施氮量N level (N) ** ** ** ** ** ** **
追氮比例N topdressing ratio (F) * * ** ** ** ** **
钾肥追施Potassium top dressing (K) NS * ** ** ** ** **
N×F NS NS NS ** ** ** **
N×K NS NS NS NS NS ** **
K×F NS NS NS NS NS NS NS
N×K×F NS NS NS NS NS NS NS

图2

氮肥与钾肥运筹对弱筋小麦茎蘖动态的影响 BHM 1: 白湖麦1号, WXM 0638: 皖西麦0638。N0: 施氮量0 kg hm-2, N10: 施氮量150 kg hm-2, N12: 施氮量180 kg hm-2, N14: 施氮量210 kg hm-2, K1: 钾肥一次性基施, K2: 钾肥基追比5:5, F1: 施氮基追比8:2, F2: 施氮基追比7:3, F3: 施氮基追比6:4。不同小写字母表示不同处理间存在显著差异(P < 0.05)。"

图3

2022-2023氮肥与钾肥运筹对弱筋小麦地上部干物质积累量的影响 处理和缩写同图2。JS: 拔节期, AS: 开花期, MS: 灌浆期。不同小写字母表示不同处理间存在显著差异(P < 0.05)。"

图4

2023-2024氮肥与钾肥运筹对弱筋小麦地上部干物质积累量的影响 处理和缩写同图2和图3。不同小写字母表示不同处理间存在显著差异(P < 0.05)。"

表2

氮肥与钾肥运筹对小麦干物质转运及籽粒产量贡献率的影响(2022-2023)"

处理
Treatment
白湖麦1号 BHM 1
花前干物质
Dry matter before anthesis
花后干物质
Dry matter after anthesis
PTA
(kg hm-2)
PTR
(%)
CPT
(%)
PAA
(kg hm-2)
CPA
(%)
N0K1 771.59 h 24.54 i 25.93 ghi 1871.35 i 62.90 abcde
N0K2 759.44 h 21.88 i 22.25 i 2288.97 i 67.07 a
N10K1F1 2409.59 efg 44.17 bcd 40.55 acd 3291.24 h 55.38 efg
N10K1F2 2213.51 g 37.82 efg 32.43 cdefgh 4108.18 fg 60.19 abcdef
N10K1F3 2172.13 g 34.88 gh 28.35 fghi 4987.29 cd 65.09 abc
N10K2F1 2340.60 fg 40.30 cdef 36.12 bcdef 3934.67 fgh 60.72 abcdef
N10K2F2 2206.75 g 36.24 fgh 29.14 fghi 4877.23 cde 64.40 abcd
N10K2F3 2084.00 g 31.97 h 24.49 hi 5617.26 bc 66.01 ab
N12K1F1 3007.83 bcde 47.47 ab 46.38 a 3459.37 gh 53.34 fg
N12K1F2 3021.46 bcde 43.03 bcd 39.72 abcde 4321.12 def 56.80 defg
N12K1F3 2653.58 defg 35.30 gh 30.51 defghi 5616.26 bc 64.58 abc
N12K2F1 2982.28 bcde 42.93 bcd 40.76 abc 4313.11 def 58.94 bcdefg
N12K2F2 2879.11 cdef 39.71 defg 36.16 bcdef 4928.43 cde 61.91 abcde
N12K2F3 2517.59 defg 32.76 h 28.58 fghi 5783.81 b 65.67 ab
N14K1F1 3771.76 a 49.56 a 46.09 ab 4214.13 def 51.50 g
N14K1F2 3560.96 ab 44.04 bcd 40.53 abcd 4871.81 cde 55.46 efg
N14K1F3 3408.79 abc 40.90 cdef 36.83 abcdef 5799.84 b 62.66 abcde
N14K2F1 3577.03 ab 45.17 abc 41.12 abc 4986.75 cd 57.32 cdefg
N14K2F2 3497.50 abc 41.57 cde 35.88 cdefg 5861.74 b 60.13 abcdef
N14K2F3 3152.92 abcd 35.21 gh 30.11 efghi 6782.26 a 64.77 abc
施氮量 N level (N) ** ** ** ** **
追氮比例 N topdressing ratio (F) * ** ** ** **
钾肥追施 Potassium top dressing (K) NS ** ** ** **
N × F NS ** NS ** NS
N × K NS NS NS NS NS
K × F NS NS NS NS NS
N × K × F NS NS NS NS NS
处理
Treatment
皖西麦0638 WXM 0638
花前干物质
Dry matter before anthesis
花后干物质
Dry matter after anthesis
PTA
(kg hm-2)
PTR
(%)
CPT
(%)
PAA
(kg hm-2)
CPA
(%)
N0K1 752.58 i 27.52 ij 25.74 cdefgh 2105.78 l 72.02 b
N0K2 663.82 i 21.16 k 16.91 gh 3097.96 k 78.91 a
N10K1F1 1717.54 efgh 38.11 bcd 29.24 bcdef 3556.54 jk 60.55 defg
N10K1F2 1589.22 fgh 33.29 defg 24.35 defgh 4046.75 hij 62.01 cdef
N10K1F3 1467.67 gh 28.41 ghi 20.13 fgh 4987.25 def 68.39 bc
N10K2F1 1603.01 fgh 32.26 efghi 26.77 cdefg 3814.67 ij 63.71 cdef
N10K2F2 1447.09 gh 27.30 ij 20.76 fgh 4523.27 fgh 64.89 cde
N10K2F3 1284.82 h 22.88 jk 16.22 h 5478.83 bcd 69.16 bc
N12K1F1 2369.14 bcd 41.81 ab 37.96 ab 3674.95 ij 58.88 efg
N12K1F2 2241.86 cde 36.73 bcdef 32.12 abcde 4162.62 hi 59.64 defg
N12K1F3 2205.27 cde 33.59 def 27.18 cdefg 5260.75 cde 64.84 cde
N12K2F1 2182.49 cde 35.62 cdef 29.96 abcdef 4376.84 gh 60.08 defg
N12K2F2 2115.86 cdef 32.75 efgh 28.08 bcdef 4783.15 efg 63.49 cdef
N12K2F3 1919.60 defg 27.78 hij 21.71 efgh 5878.37 ab 66.47 bcd
N14K1F1 3135.28 a 45.58 a 39.67 a 3836.57 ij 48.54 h
N14K1F2 2986.21 a 40.94 ab 34.37 abcd 4951.80 ef 57.00 fg
N14K1F3 2887.24 ab 37.41 bcde 28.61 bcdef 5483.85 bcd 54.35 gh
N14K2F1 2924.38 ab 40.61 abc 34.95 abc 4516.99 fgh 53.98 gh
N14K2F2 2860.42 ab 37.00 bcdef 28.68 bcdef 5715.61 bc 57.31 fg
N14K2F3 2597.83 abc 31.83 fghi 24.56 cdefgh 6308.31 a 59.63 defg
施氮量 N level (N) ** ** ** ** **
追氮比例 N topdressing ratio (F) NS ** ** ** **
钾肥追施 Potassium top dressing (K) * ** ** ** **
N × F NS * NS ** NS
N × K NS NS NS * NS
K × F NS NS NS NS NS
N × K × F NS NS NS NS NS

表3

氮肥与钾肥运筹对小麦干物质转运及籽粒产量贡献率的影响(2023-2024)"

处理
Treatment
白湖麦1号 BHM 1
花前干物质Dry matter before anthesis 花后干物质Dry matter after anthesis
PTA
(kg hm-2)
PTR
(%)
CPT
(%)
PAA
(kg hm-2)
CPA
(%)
N0K1 859.03 h 37.55 ghi 37.67 bcde 1401.65 l 61.46 b
N0K2 652.87 h 27.44 k 20.25 j 2486.56 k 77.12 a
N10K1F1 1892.38 efg 46.81 bcde 40.73 abcd 2487.85 k 53.54 bcde
N10K1F2 1702.74 g 39.36 fghi 31.10 efghi 3243.96 ghi 59.25 bc
N10K1F3 1576.92 g 33.99 ij 23.73 ij 3983.30 def 59.93 bc
N10K2F1 1811.67 fg 41.98 defg 35.88 cdef 2898.93 ijk 57.42 bcd
N10K2F2 1672.92 g 35.99 hij 24.39 hij 4035.69 de 58.84 bc
N10K2F3 1540.54 g 31.44 jk 20.46 j 4661.21 bc 61.92 b
N12K1F1 2500.28 bcd 51.12 ab 44.95 ab 2558.22 jk 45.99 ef
N12K1F2 2478.33 bcd 47.03 bcde 31.82 efgh 3496.35 fgh 44.89 ef
N12K1F3 2336.18 cde 41.46 efgh 26.52 hij 4237.15 cd 48.10 def
N12K2F1 2491.68 bcd 46.96 bcde 43.00 abc 3048.94 hij 52.62 bcde
N12K2F2 2390.69 bcd 42.50 defg 28.91 fhi 4188.74 cde 50.66 cde
N12K2F3 2252.82 def 36.79 ghij 24.59 hij 4976.59 b 54.32 bcde
N14K1F1 3102.05 a 54.79 a 45.96 a 2671.60 jk 39.58 f
N14K1F2 2900.82 ab 49.34 bc 34.66 defg 3671.09 efg 43.87 ef
N14K1F3 2825.93 abc 44.46 cdef 27.10 ghij 4699.59 bc 45.07 ef
N14K2F1 2772.98 abcd 47.68 bcd 38.12 bcde 3444.84 gh 47.36 def
N14K2F2 2766.34 abcd 44.47 cdef 30.66 efghi 4477.08 bcd 49.62 cdef
N14K2F3 2603.96 abcd 38.32 ghi 23.77 ij 5522.21 a 50.41 cde
施氮量N level (N) ** ** ** ** **
追氮比例 N topdressing ratio (F) * ** ** ** NS
钾肥追施 Potassium top dressing (K) * ** ** ** **
N × F NS ** ** ** NS
N × K NS * ** NS **
K × F NS NS NS NS NS
N × K × F NS NS NS NS NS
处理
Treatment
皖西麦0638 WXM 0638
花前干物质Dry matter before anthesis 花后干物质Dry matter after anthesis
PTA
(kg hm-2)
PTR
(%)
CPT
(%)
PAA
(kg hm-2)
CPA
(%)
N0K1 953.96 f 43.15 de 45.81 a 1062.37 l 51.01 e
N0K2 919.41 f 38.39 fg 36.22 bcd 1539.31 l 60.65 abcde
N10K1F1 1483.41 cde 45.97 d 36.92 bcd 2386.04 k 59.39 bcde
N10K1F2 1346.65 ef 37.94 fgh 26.49 gh 3316.52 ij 65.24 abcd
N10K1F3 1263.21 ef 33.47 hi 21.64 hi 4096.83 fgh 70.19 ab
N10K2F1 1383.12 def 40.03 ef 25.39 gh 3653.88 hij 67.07 abc
N10K2F2 1313.98 ef 33.96 gh 21.26 hi 4321.87 fg 69.92 ab
N10K2F3 1232.96 ef 29.60 i 15.56 i 5673.98 bcd 71.61 a
N12K1F1 2035.42 b 50.44 bc 37.20 bc 3186.28 j 58.23 cde
N12K1F2 1938.81 bc 45.64 d 30.06 cdefg 4103.37 fgh 63.61 abcd
N12K1F3 1886.66 bc 40.09 ef 24.32 gh 5133.56 de 66.18 abc
N12K2F1 1931.81 bc 44.00 de 27.95 efgh 4200.98 fgh 60.77 abcde
N12K2F2 1845.69 bc 37.99 fgh 23.02 gh 5224.73 d 65.16 abcd
N12K2F3 1794.27 bcd 35.59 fgh 20.66 hi 5863.96 bc 67.53 abc
N14K1F1 2809.87 a 56.81 a 39.53 ab 3872.56 ghi 54.49 de
N14K1F2 2716.42 a 51.29 bc 33.75 bcdef 4595.34 ef 57.10 cde
N14K1F3 2606.30 a 45.22 d 26.83 fgh 6159.44 b 63.41 abcd
N14K2F1 2780.64 a 52.19 b 34.83 bcde 4388.05 fg 54.97 de
N14K2F2 2677.69 a 47.39 cd 29.85 defg 5464.60 cd 60.93 abcde
N14K2F3 2513.32 a 40.26 ef 22.25 hi 7295.32 a 64.58 abcd
施氮量N level (N) ** ** ** ** **
追氮比例 N topdressing ratio (F) NS ** ** ** **
钾肥追施 Potassium top dressing (K) NS ** ** ** **
N × F NS ** * ** NS
N × K NS NS NS ** NS
K × F NS NS NS NS NS
N × K × F NS NS NS NS NS

图5

氮肥与钾肥运筹对弱筋小麦成熟期氮素积累的影响 处理和缩写同图2。Cob+glume: 穗轴+颖壳, Leaf: 叶片, Stem: 茎秆, Grain: 籽粒。不同小写字母表示不同处理间存在显著差异(P < 0.05)。"

表4

氮肥与钾肥运筹对小麦产量及构成因素的影响(2022-2023)"

处理
Treatment
白湖麦1号 BHM 1
千粒重
1000-kernel weight (g)
穗粒数
Grain per spike
穗数
Spike number (×104 hm-2)
籽粒产量
Grain yield (kg hm-2)
N0K1 34.09 l 23.48 e 371.67 h 2975.19 l
N0K2 34.45 kl 25.19 e 395.00 gh 3412.88 l
N10K1F1 34.49 kl 41.90 d 411.67 fgh 5943.00 k
N10K1F2 35.97 ghi 42.67 cd 445.00 efg 6825.25 ij
N10K1F3 36.75 defg 45.14 abcd 463.33 def 7661.81 gh
N10K2F1 35.28 ij 42.86 cd 431.67 fg 6480.45 jk
N10K2F2 36.65 defg 46.33 abcd 446.67 efg 7573.42 gh
N10K2F3 36.74 defg 49.33 ab 470.00 cdef 8509.14 def
N12K1F1 35.01 jk 42.38 cd 438.33 fg 6485.41 jk
N12K1F2 36.10 efgh 45.10 abcd 468.33 cdef 7607.71 gh
N12K1F3 36.88 de 47.10 abcd 503.33 bcde 8696.63 de
N12K2F1 35.67 hij 46.00 abcd 446.67 efg 7317.38 hi
N12K2F2 36.83 de 46.62 abcd 465.00 cdef 7961.20 fg
N12K2F3 37.19 cd 47.24 abcd 505.00 bcde 8807.99 cde
N14K1F1 36.01 fghi 44.00 bcd 516.67 abcd 8182.80 efg
N14K1F2 36.87 de 45.81 abcd 526.67 abc 8875.09 cd
N14K1F3 37.87 bc 46.14 abc 535.00 ab 9346.04 bc
N14K2F1 36.80 def 46.05 abcd 515.00 abcd 8699.81 de
N14K2F2 37.70 a 47.76 ab 541.67 ab 9748.26 b
N14K2F3 38.02 ab 48.67 a 566.67 a 10471.69 a
施氮量N level (N) ** ** ** **
追氮比例N topdressing ratio (F) ** * ** **
钾肥追施Potassium top dressing (K) ** ** NS **
N × F ** NS NS **
N × K NS NS NS NS
K × F NS NS NS NS
N × K × F NS NS NS NS
处理
Treatment
皖西麦0638 WXM 0638
千粒重
1000-kernel weight (g)
穗粒数
Grain per spike
穗数
Spike number (×104 hm-2)
籽粒产量
Grain yield (kg hm-2)
N0K1 35.62 i 20.33 g 405.00 h 2923.79 k
N0K2 36.87 h 25.90 f 411.67 h 3925.94 j
N10K1F1 37.23 h 38.10 e 415.00 gh 5874.04 i
N10K1F2 38.52 fg 39.86 de 425.00 fgh 6525.62 ghi
N10K1F3 39.02 cdef 41.71 cde 450.00 efgh 7291.90 efg
N10K2F1 37.48 gh 38.00 e 421.67 fgh 5987.91 i
N10K2F2 38.54 fg 41.05 de 441.67 efgh 6971.16 fgh
N10K2F3 39.92 abcde 42.76 bcde 465.00 def 7921.47 cde
N12K1F1 38.52 fg 38.38 e 423.33 fgh 6241.85 hi
N12K1F2 38.87 def 40.52 de 445.00 efgh 6979.95 fgh
N12K1F3 39.00 cdef 41.38 cde 475.00 cde 7688.90 def
N12K2F1 38.74 ef 40.76 de 461.67 defg 7285.44 efg
N12K2F2 40.26 abc 42.57 cde 468.33 cdef 8053.53 bcde
N12K2F3 40.31 abc 43.29 bcd 506.67 bcd 8843.31 b
N14K1F1 39.06 cdef 41.43 cde 488.33 cde 7903.51 cde
N14K1F2 39.65 bcdef 42.81 bcde 513.33 abc 8687.34 bc
N14K1F3 40.42 ab 46.57 a 536.67 ab 10089.95 a
N14K2F1 39.63 bcdef 43.62 bcd 485.00 cde 8368.50 bcd
N14K2F2 40.09 abcd 45.95 abc 541.67 ab 9972.85 a
N14K2F3 41.18 a 46.29 ab 555.00 a 10579.07 a
施氮量N level (N) ** ** ** **
追氮比例N topdressing ratio (F) ** ** ** **
钾肥追施Potassium top dressing (K) ** ** * **
N × F ** NS NS **
N × K NS * NS *
K × F NS NS NS NS
N × K × F NS NS NS NS

表5

氮肥与钾肥运筹对小麦产量及构成因素的影响(2023-2024)"

处理
Treatment
白湖麦1号 BHM 1
千粒重
1000-kernel weight (g)
穗粒数
Grain per spike
穗数
Spike number (×104 hm-2)
籽粒产量
Grain yield (kg hm-2)
N0K1 36.26 defg 22.78 d 280.01 f 2280.53 m
N0K2 37.06 bcdef 27.67 d 325.02 ef 3224.16 l
N10K1F1 33.66 h 42.33 c 327.52 ef 4646.55 k
N10K1F2 36.10 efg 42.56 c 357.52 def 5475.42 ij
N10K1F3 37.06 bcdef 46.89 abc 392.52 cde 6646.54 h
N10K2F1 33.69 h 42.67 c 353.35 def 5048.81 jk
N10K2F2 36.14 defg 46.67 abc 407.52 cde 6858.33 gh
N10K2F3 37.07 bcdef 48.67 abc 417.52 bcd 7527.86 ef
N12K1F1 34.61 gh 43.44 c 370.02 cde 5562.06 i
N12K1F2 37.02 bcdef 50.33 abc 420.02 bcd 7789.09 e
N12K1F3 38.44 abc 52.33 ab 447.52 abc 8808.65 c
N12K2F1 34.89 gh 44.00 bc 377.52 cde 5794.41 i
N12K2F2 37.26 bcdef 52.56 ab 422.52 abcd 8268.34 d
N12K2F3 38.28 abc 52.89 a 452.52 abc 9161.35 c
N14K1F1 35.55 fg 46.67 abc 407.52 cde 6749.92 h
N14K1F2 37.60 bcde 52.11 ab 427.52 abcd 8368.33 d
N14K1F3 38.71 ab 54.67 a 495.02 ab 10426.60 b
N14K2F1 36.81 cdef 48.22 abc 410.02 cde 7273.98 fg
N14K2F2 37.98 bcd 52.78 a 455.02 abc 9023.18 c
N14K2F3 39.84 a 54.67 a 505.03 a 10954.67 a
施氮量N level (N) ** ** ** **
追氮比例N topdressing ratio (F) ** ** ** **
钾肥追施Potassium top dressing (K) * * * **
N × F ** NS NS **
N × K NS NS NS *
K × F NS NS NS NS
N × K × F NS NS NS NS
处理
Treatment
皖西麦0638 WXM 0638
千粒重
1000-kernel weight (g)
穗粒数
Grain per spike
穗数
Spike number (×104 hm-2)
籽粒产量
Grain yield (kg hm-2)
N0K1 32.82 e 20.44 g 310.02 h 2082.53 m
N0K2 34.65 de 22.89 g 320.02 gh 2538.06 m
N10K1F1 35.37 cde 36.44 f 316.68 gh 4017.36 l
N10K1F2 35.72 bce 40.78 def 350.02 fgh 5083.38 k
N10K1F3 36.83 abcd 43.00 cde 370.02 efgh 5836.42 ijk
N10K2F1 35.66 bcde 39.89 ef 387.52 cdefgh 5447.93 jk
N10K2F2 35.91 bcde 44.67 bcde 387.52 cdefgh 6181.57 hij
N10K2F3 37.43 abcd 45.11 abcde 470.03 bc 7923.00 de
N12K1F1 35.96 bcde 40.11 ef 382.52 defgh 5472.28 jk
N12K1F2 38.04 abc 43.56 bcde 392.52 cdefg 6450.37 ghi
N12K1F3 38.19 abc 45.67 abcde 447.52 bcde 7757.34 ef
N12K2F1 37.33 abcd 47.33 abcd 395.02 cdefg 6912.51 gh
N12K2F2 38.10 abc 47.56 abcd 445.02 bcde 8018.68 de
N12K2F3 38.96 ab 48.89 abc 457.53 bcd 8682.92 cd
N14K1F1 36.31 abcd 47.56 abcd 412.52 cdef 7107.56 fg
N14K1F2 38.37 abc 49.11 abc 425.02 bcdef 7987.55 de
N14K1F3 38.86 ab 50.11 ab 497.53 ab 9653.03 b
N14K2F1 38.53 abc 48.89 abc 425.02 bcdef 7983.01 de
N14K2F2 38.71 ab 49.56 abc 470.03 bc 8969.04 bc
N14K2F3 39.31 a 51.89 a 555.03 a 11296.63 a
施氮量N level (N) ** ** ** **
追氮比例N topdressing ratio (F) * * ** **
钾肥追施Potassium top dressing (K) ** ** ** **
N × F NS NS NS **
N × K NS NS NS **
K × F NS NS NS NS
N × K × F NS NS NS NS

表6

氮肥与钾肥运筹对弱筋小麦品质影响的方差分析"

年份
Year
处理
Treatment
白湖麦1号 BHM 1 皖西麦0638 WXM 0638
蛋白质含量
Protein content
湿面筋含量
Wet gluten content
蛋白质含量
Protein content
湿面筋含量
Wet gluten content
2022-2023 施氮量N level (N) ** ** ** **
追氮比例 N topdressing ratio (F) ** ** ** **
钾肥追施Potassium top dressing (K) ** ** ** **
N × F ** ** ** **
N × K NS NS NS NS
K × F NS NS ** NS
N × K × F NS NS ** NS
2023-2024 施氮量N level (N) ** ** ** **
追氮比例 N topdressing ratio (F) ** ** ** **
钾肥追施Potassium top dressing (K) ** ** ** **
N × F ** ** ** **
N × K NS NS ** **
K × F NS NS * **
N × K × F * ** * *

图6

氮肥与钾肥运筹对弱筋小麦籽粒蛋白质含量的影响 处理和缩写同图2。特殊线12.5为国家弱筋小麦蛋白质含量标准, 特殊线11.5为国家优质弱筋小麦蛋白质含量标准。不同小写字母表示不同处理间存在显著差异(P < 0.05)。"

图7

氮肥与钾肥运筹对弱筋小麦湿面筋含量的影响 处理和缩写同图2。特殊线22.0为国家优质弱筋小麦湿面筋含量标准。不同小写字母表示不同处理间存在显著差异(P < 0.05)。"

图8

小麦群体指标、湿面筋含量与籽粒产量、蛋白质含量的相关性分析 TGW: 千粒重; GN: 粒数; Spikes: 穗数; MDM: 成熟期干物质积累; PTA: 花前干物质转运量; PTR: 花前干物质转运率; CPT: 花前干物质对籽粒贡献率; PAA: 花后干物质生产量; CPA: 花后干物质对籽粒贡献率; MNA: 成熟期氮素积累量; WGC: 湿面筋含量; GY: 产量; GPC: 籽粒蛋白质含量。Mantel’s P: 曼特尔检验的P值, Mantel’s r: 曼特尔相关系数, Pearson’s r: 皮尔逊相关系数。方块的大小表示相关系数的绝对值。* 表示在0.05水平上有显著影响, **表示在0.01水平上有显著影响, *** 表示在0.001水平上有显著影响。"

[1] Li P F, Ma B L, Guo S, Ding T T, Xiong Y C. Bottom-up redistribution of biomass optimizes energy allocation, water use and yield formation in dryland wheat improvement. J Sci Food Agric, 2022, 102: 3336-3349.
[2] Tadesse W, Sanchez-Garcia M, Assefa S, Amri A, Bishaw Z, Ogbonnaya F, Baum M. Genetic gains in wheat breeding and its role in feeding the world. Crop Breed Genet Genom, 2019, 1: e190005.
[3] 胡学旭, 孙丽娟, 周桂英, 吴丽娜, 陆伟, 李为喜, 王爽, 杨秀兰, 宋敬可, 王步军. 2006-2015年中国小麦质量年度变化. 中国农业科学, 2016, 49: 3063-3072.
Hu X X, Sun L J, Zhou G Y, Wu L N, Lu W, Li W X, Wang S, Yang X L, Song J K, Wang B J. Variations of wheat quality in China from 2006 to 2015. Sci Agric Sin, 2016, 49: 3063-3072 (in Chinese with English abstract).
[4] Duncan E G O, Sullivan C A, Roper M M, Biggs J S, Peoples M B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertilizer use, grain yield and protein content of wheat: review. Field Crops Res, 2018, 226: 56-65.
[5] Hernández-Ochoa I M, Gaiser T, Hüging H, Ewert F. Yield components and yield quality of old and modern wheat cultivars as affected by cultivar release date, N fertilization and environment in Germany. Field Crops Res, 2023, 302: 109094.
[6] Lu D J, Lu F F, Pan J X, Cui Z L, Zou C Q, Chen X P, He M R, Wang Z L. The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the North China Plain. Field Crops Res, 2015, 171: 157-164.
[7] Si Z Y, Zain M, Mehmood F, Wang G S, Gao Y, Duan A W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric Water Manag, 2020, 231: 106002.
[8] Liu M, Wu X L, Li C S, Li M, Xiong T, Tang Y L. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Res, 2020, 248: 107720.
[9] Cho S W, Kang C S, Kang T G, Cho K M, Park C S. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J Integr Agric, 2018, 17: 982-993.
doi: 10.1016/S2095-3119(18)61920-3
[10] Hamani A K M, Abubakar S A, Si Z Y, Kama R, Gao Y, Duan A W. Suitable split nitrogen application increases grain yield and photosynthetic capacity in drip-irrigated winter wheat (Triticum aestivum L.) under different water regimes in the North China Plain. Front Plant Sci, 2023, 13: 1105006.
[11] Garrido-Lestache E, López-Bellido R J, López-Bellido L. Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur J Agron, 2005, 23: 265-278.
[12] Dong S X, Zhang X, Chu J P, Zheng F N, Fei L W, Dai X L, He M R. Optimized seeding rate and nitrogen topdressing ratio for simultaneous improvement of grain yield and bread-making quality in bread wheat sown on different dates. J Sci Food Agric, 2022, 102: 360-369.
[13] Jumaboev Z M. Seeding rates, productivity and grain quality indicators of foreign and domestic promising varieties of winter soft wheat. J Glob Agric Ecol, 2022, 14: 1-7.
[14] Blandino M, Vaccino P, Reyneri A. Late-season nitrogen increases improver common and durum wheat quality. Agron J, 2015, 107: 680-690.
[15] Zheng B Q, Jiang J L, Wang L L, Huang M, Zhou Q, Cai J, Wang X, Dai T B, Jiang D. Reducing nitrogen rate and increasing plant density accomplished high yields with satisfied grain quality of soft wheat via modifying the free amino acid supply and storage protein gene expression. J Agric Food Chem, 2022, 70: 2146-2159.
[16] Hafeez A, Ali S, Ma X L, Tung S A, Shah A N, Liu A D, Ahmed S, Chattha M S, Yang G Z. Potassium to nitrogen ratio favors photosynthesis in late-planted cotton at high planting density. Ind Crops Prod, 2018, 124: 369-381.
[17] Hou W F, Xue X X, Li X K, Khan M R, Yan J Y, Ren T, Cong R H, Lu J W. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res, 2019, 236: 14-23.
[18] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670-681.
doi: 10.1111/j.1399-3054.2008.01073.x pmid: 18331406
[19] Hou W F, Tränkner M, Lu J W, Yan J Y, Huang S Y, Ren T, Cong R H, Li X K. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biol, 2019, 19: 302.
doi: 10.1186/s12870-019-1894-8 pmid: 31291890
[20] 武际, 郭熙盛, 王允青, 黄晓荣. 钾肥运筹对小麦氮素和钾素吸收利用及产量和品质的影响. 土壤, 2008, 40: 777-783.
Wu J, Guo X S, Wang Y Q, Huang X R. Effects of potassium fertilizer operation on the uptake and utilization of nitrogen and potassium, yield and quality of wheat. Soils, 2008, 40: 777-783 (in Chinese with English abstract).
[21] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响. 作物学报, 2021, 47: 2258-2267.
doi: 10.3724/SP.J.1006.2021.01081
Hu X H, Gu S B, Zhu J K, Wang D. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields. Acta Agron Sin, 2021, 47: 2258-2267 (in Chinese with English abstract).
[22] 中华人民共和国国家质量监督检验检疫总局. 小麦品种品质分类: GB/T 17320-2013, 北京: 中国标准出版社, 2013.
State administration for quality supervision, inspection and quarantine of the People’s Republic of China. Classification of quality of wheat varieties: GB/T 17320-2013, Beijing: China Standard Press, 2013 (in Chinese).
[23] Kaur A, Singh N, Kaur S, Ahlawat A K, Singh A M. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars. Food Chem, 2014, 158: 48-55.
doi: 10.1016/j.foodchem.2014.02.096 pmid: 24731313
[24] Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol, 2011, 155: 125-129.
doi: 10.1104/pp.110.165076 pmid: 20959423
[25] 丁锦峰, 徐东忆, 丁永刚, 朱敏, 李春燕, 朱新开, 郭文善. 栽培模式对稻茬小麦籽粒产量、氮素吸收利用和群体质量的影响. 中国农业科学, 2023, 56: 619-634.
doi: 10.3864/j.issn.0578-1752.2023.04.003
Ding J F, Xu D Y, Ding Y G, Zhu M, Li C Y, Zhu X K, Guo W S. Effects of cultivation patterns on grain yield, nitrogen uptake and utilization, and population quality of wheat under rice-wheat rotation. Sci Agric Sin, 2023, 56: 619-634 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.04.003
[26] Haque M A, Haque M M. Growth, yield and nitrogen use efficiency of new rice variety under variable nitrogen rates. Am J Plant Sci, 2016, 7: 612-622.
[27] Luo L, Zhang Y L, Xu G H. How does nitrogen shape plant architecture? J Exp Bot, 2020, 71: 4415-4427.
doi: 10.1093/jxb/eraa187 pmid: 32279073
[28] Leyser O. The control of shoot branching: an example of plant information processing. Plant Cell Environ, 2009, 32: 694-703.
[29] Chen L, Qiao Z J, Wang J J, Wang H G, Cao X N, Dong J L. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet. Agric Sci Technol, 2015, 16: 1425-1428.
[30] Xu K, Chai Q, Hu F L, Fan Z L, Yin W. N-fertilizer postponing application improves dry matter translocation and increases system productivity of wheat/maize intercropping. Sci Rep, 2021, 11: 22825.
doi: 10.1038/s41598-021-02345-5 pmid: 34819592
[31] Carlisle E, Myers S, Raboy V, Bloom A. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Front Plant Sci, 2012, 3: 195.
doi: 10.3389/fpls.2012.00195 pmid: 22969784
[32] Ji X H, Zheng S X, Shi L H, Liu Z B. Systematic studies of nitrogen loss from paddy soils through leaching in the Dongting Lake area of China. Pedosphere, 2011, 21: 753-762.
[33] Venterea R T, Halvorson A D, Kitchen N, Liebig M A, Cavigelli M A, Del Grosso S J, Motavalli P P, Nelson K A, Spokas K A, Singh B P, et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Frontiers Ecol & Environ, 2012, 10: 562-570.
[34] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响. 作物学报, 2022, 48: 942-951.
doi: 10.3724/SP.J.1006.2022.14045
Li R D, Yin Y Y, Song W W, Wu T T, Sun S, Han T F, Xu C L, Wu C X, Hu S X. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types. Acta Agron Sin, 2022, 48: 942-951 (in Chinese with English abstract).
[35] 张翔宇.钾肥底施和追施比例对冬小麦产量和品质的影响. 山东农业大学硕士学位论文, 山东泰安, 2022.
Zhang X Y. Effect of the Ratio of Bottom and Top Application of Potassium Fertilizer on Yield and Quality of Winter Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022 (in Chinese with English abstract).
[36] Godebo T, Laekemariam F, Loha G. Nutrient uptake, use efficiency and productivity of bread wheat (Triticum aestivum L.) as affected by nitrogen and potassium fertilizer in Keddida Gamela Woreda, Southern Ethiopia. Environ Syst Res, 2021, 10: 12.
[37] Guo J X, Jia Y M, Chen H H, Zhang L J, Yang J C, Zhang J, Hu X Y, Ye X, Li Y, Zhou Y. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci Rep, 2019, 9: 1248.
doi: 10.1038/s41598-018-37838-3 pmid: 30718692
[38] Chen Y L, Xiao C X, Wu D L, Xia T T, Chen Q W, Chen F J, Yuan L X, Mi G H. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. Eur J Agron, 2015, 62: 79-89.
[39] Yu X R, Chen X Y, Wang L L, Yang Y, Zhu X W, Shao S S, Cui W X, Xiong F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. J Exp Bot, 2017, 68: 2259-2274.
doi: 10.1093/jxb/erx108 pmid: 28472326
[40] De Santis M A, Giuliani M M, Flagella Z, Reyneri A, Blandino M. Impact of nitrogen fertilisation strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Res, 2020, 254: 107829.
[41] Asseng S, Ewert F, Rosenzweig C, Jones J W, Hatfield J L, Ruane A C, Boote K J, Thorburn P J, Rötter R P, Cammarano D, Brisson N, et al. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang, 2013, 3: 827-832.
[42] Zheng B Q, Fang Q, Zhang C X, Mahmood H, Zhou Q, Li W Y, Li X N, Cai J, Wang X, Zhong Y X, et al. Reducing nitrogen rate and increasing plant density benefit processing quality by modifying the spatial distribution of protein bodies and gluten proteins in endosperm of a soft wheat cultivar. Field Crops Res, 2020, 253: 107831.
[43] Zörb C, Ludewig U, Hawkesford M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018, 23: 1029-1037.
doi: S1360-1385(18)30192-4 pmid: 30249481
[44] Staugaitis G, Poškus K, Brazienė Z, Avižienytė D. Effect of sulphur and nitrogen fertilisation on winter wheat in Calcaric Luvisol. Zemdirbyste-Agriculture, 2022, 109: 211-218.
[45] Wang J, Qiu Y Y, Zhang X Y, Zhou Z, Han X, Zhou Y, Qin L, Liu K, Li S Y, Wang W L, et al. Increasing basal nitrogen fertilizer rate improves grain yield, quality and 2-acetyl-1-pyrroline in rice under wheat straw returning. Front Plant Sci, 2023, 13: 1099751.
[46] Hawkesford M J. Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci, 2014, 59: 276-283.
pmid: 24882935
[47] Barneix A J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol, 2007, 164: 581-590.
[48] Zhen S M, Zhou J X, Deng X, Zhu G R, Cao H, Wang Z M, Yan Y M. Metabolite profiling of the response to high-nitrogen fertilizer during grain development of bread wheat (Triticum aestivum L.). J Cereal Sci, 2016, 69: 85-94.
[49] Zhang X Q, Xu Y J, Du S Z, Qiao Y Q, Cao C F, Chen H. Optimized N application improves N absorption, population dynamics, and ear fruiting traits of wheat. Front Plant Sci, 2023, 14: 1199168.
[50] 朱新开, 郭文善, 周君良, 胡宏, 张影, 李春燕, 封超年, 彭永欣. 氮素对不同类型专用小麦营养和加工品质调控效应. 中国农业科学, 2003, 36: 640-645.
Zhu X K, Guo W S, Zhou J L, Hu H, Zhang Y, Li C Y, Feng C N, Peng Y X. Effects of nitrogen on grain yield. Nutritional quality and processing quality of wheat for different end uses. Sci Agric Sin, 2003, 36: 640-645 (in Chinese with English abstract).
[51] Wu H Y, Wang Z J, Zhang X, Wang J C, Hu W J, Wang H, Gao D R, Souza E, Cheng S H. Effects of different fertilizer treatments, environment and varieties on the yield-, grain-, flour-, and dough- related traits and cookie quality of weak-gluten wheat. Plants, 2022, 11: 3370.
[52] Daaloul Bouacha O, Nouaigui S, Rezgui S. Effects of N and K fertilizers on durum wheat quality in different environments. J Cereal Sci, 2014, 59: 9-14.
[1] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[2] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[3] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[4] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[5] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[6] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[7] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[8] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[9] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[10] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[11] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[12] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[13] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[14] 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466.
[15] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .