欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 1080-1090.doi: 10.3724/SP.J.1006.2024.31053

• 研究简报 • 上一篇    

基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析

齐学礼1(), 李莹2(), 李春盈3, 韩留鹏1, 赵明忠1, 张建周3,*()   

  1. 1河南省作物分子育种研究院, 河南郑州 450002
    2河南农业大学学报编辑部, 河南郑州 450002
    3河南省农业科学院小麦研究所, 河南郑州 450002
  • 收稿日期:2023-09-17 接受日期:2024-01-12 出版日期:2024-04-12 网络出版日期:2024-02-23
  • 通讯作者: * 张建周, E-mail: zhangjianzhou00@163.com
  • 作者简介:齐学礼, E-mail: xueliqi888@163.com;
    李莹, E-mail: liying1233@163.com
    **同等贡献
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(小麦, CARS-3-7);河南省农业科学院自主创新项目(2022ZC03)

Alleviative effect of salicylic acid on wheat seedlings with stripe rust based on transcriptome and differentially expressed genes

QI Xue-Li1(), LI Ying2(), LI Chun-Ying3, HAN Liu-Peng1, ZHAO Ming-Zhong1, ZHANG Jian-Zhou3,*()   

  1. 1Crops Molecular Breeding Academy of Henan, Zhengzhou 450002, Henan, China
    2Editorial Department of Journal of Henan Agricultural University, Zhengzhou 450002, Henan, China
    3Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2023-09-17 Accepted:2024-01-12 Published:2024-04-12 Published online:2024-02-23
  • Contact: * E-mail: zhangjianzhou00@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA (Wheat, CARS-3-7);Independent Innovation Project of HAAS(2022ZC03)

摘要:

为探究外源水杨酸提高小麦条锈病抗性的作用机制, 本文将周麦18分为未处理的小麦幼苗(对照)、条锈菌侵染的小麦幼苗(SR)和水杨酸处理条锈菌侵染的小麦幼苗(SA-SR), 对处理15 d后的小麦幼苗进行抗病性鉴定、氨基酸含量检测、转录组测序及荧光定量分析鉴定。结果表明: 外源水杨酸能够显著降低条锈菌对小麦幼苗的致病力; SR组叶片中氨基酸含量普遍降低, 而经过水杨酸预先处理的SA-SR组与Control无显著差异, 说明小麦条锈病造成叶片中氨基酸的含量显著降低; 通过GO富集分析发现, SR和SA-SR组的差异基因在与光合作用相关的生物过程中富集, 涉及的细胞组分包括叶绿体和类囊体等, KEGG通路富集分析显示, SR和SA-SR两个分组均在MAPK信号通路和次生代谢物的生物合成中显著富集, 在植物的抗病或抗逆中发挥重要作用。

关键词: 小麦条锈病, 水杨酸, 氨基酸, 转录组

Abstract:

In order to explore the mechanism of exogenous salicylic acid in improving the resistance of wheat stripe rust, using, the untreated wheat seedlings (control), stripe rust wheat seedlings (SR), and salicylic acid treated stripe rust wheat seedlings (SA-SR) as the experimental materials were investigated using Zhoumai 18. After 15 days of treatment, the wheat seedlings were identified for disease resistance, amino acid detection, transcriptome sequencing, and fluorescence quantification. The results indicated that the exogenous salicylic acid could significantly reduce the pathogenicity of stripe rust in wheat seedlings. The content of amino acids in leaves in the SR group was generally reduced, while there was no significant difference between the SA-SR group and the control group pretreated with salicylic acid, indicating that the content of amino acids in leaves was significantly reduced due to wheat stripe rust. GO enrichment indicated that the differentially expressed genes of SR and SA-SR groups were enriched in biological processes related to photosynthesis involving cell components such as chloroplasts and thylakoids. KEGG pathway enrichment showed that both SR and SA-SR subgroups were significantly enriched in the MAPK signaling pathway and the biosynthesis of secondary metabolites played an important role in plant disease resistance or stress resistance.

Key words: wheat stripe rust, salicylic acid, amino acid, transcriptom

图1

小麦苗期条锈病反应型鉴定标准(0~9级)"

表1

实时荧光定量PCR所用引物"

基因名称
Gene ID
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
TraesCS2D02G433300 CGCCGTGCGTGAGTAATTC CGTCGGGTTCGACACTCTTA
TraesCS2D02G014800 CGACCTCAACTCCAACTCCATA ACGGATTCCCCTCTCCGAA
TraesCS6B02G078400 TGGGAGCAATACTTCGCCTG ATAGCCCATCACCCCCGTAT
TraesCS1B02G038100 AGTTAGACCAAATGGCCCCTC CCCCCTGAGGTATAGACCGA
TraesCS5D02G099000 AAGCCTTTGCTGTCCTACGG AATGGGCCTGTAATCGGTGG
TraesCS2A02G378900 CCAGTCGGAGCACGTTATCA GATGGTGCCGTAGATCCGTT
TraesCS2D02G375200 TCCATTGTAGGCTTGCTGGA CCGGGTGATAACCCACAAGTA
TraesCS5D02G531600 CAGCCCTTTATAGGCCCACG TAGGCCGAAAGCTAACACGG
TraesCS1D02G290100 CGACGCCTATAGCAAACGGA GCCTGAAGCCAACGAAACTC
TraesCS1B02G011100 CGTATGCGCTATTCGTTGGC GGCGAGGATTCAGGAACTGT

图2

SR组和SA-SR组对CYR32的反应情况"

表2

3个分组中小麦叶片水解氨基酸含量"

氨基酸
Amino acid
对照Control SR SA-SR
C_1 C_2 C_3 SR_1 SR_2 SR_3 SA-SR_1 SA-SR_2 SA-SR_3
天冬氨酸Asp 3.302 3.421 3.411 2.659 2.723 2.502 3.761 3.613 3.559
谷氨酸Glu 6.076 5.078 5.295 5.492 5.333 5.880 5.878 5.295 6.492
丝氨酸Ser 1.213 1.473 1.354 1.022 0.988 0.813 1.073 1.054 1.122
组氨酸His* 0.574 0.525 0.578 0.571 0.501 0.402 0.525 0.578 0.671
甘氨酸Gly 1.500 1.621 1.548 1.447 1.413 1.500 1.521 1.548 1.747
苏氨酸Thr* 0.664 0.617 0.649 0.512 0.551 0.643 0.617 0.649 0.670
精氨酸Arg 3.233 3.701 3.623 2.612 2.813 2.233 2.791 2.820 3.609
丙氨酸Ala 1.063 1.111 1.262 1.200 0.961 1.063 1.011 0.962 1.212
酪氨酸Tyr 0.771 0.752 0.729 0.831 0.689 0.771 0.652 0.679 0.831
胱氨酸Cys-s 0.115 0.112 0.099 0.029 0.016 0.109 0.120 0.199 0.129
缬氨酸Val* 1.153 1.011 1.121 1.119 1.115 1.153 1.011 1.121 1.319
甲硫氨酸Met* 0.169 0.155 0.177 0.128 0.134 0.129 0.155 0.157 0.188
苯丙氨酸Phe* 1.378 1.216 1.313 1.209 1.008 1.018 1.216 1.113 1.209
异亮氨酸Ile* 0.984 0.851 0.894 0.727 0.696 0.683 0.851 0.894 0.827
亮氨酸Leu* 1.645 1.555 1.599 1.360 1.402 1.345 1.519 1.581 1.580
赖氨酸Lys* 0.803 0.792 0.832 0.860 0.803 0.703 0.850 0.842 1.060
脯氨酸Pro 0.912 0.902 0.927 0.878 0.820 0.790 0.960 0.938 1.268
总量 Total 24.118 24.626 24.113 21.772 19.713 20.346 24.236 22.765 26.349

图3

3个分组中小麦叶片17种水解氨基酸含量差异比较"

表3

转录组数据统计表"

样品
SA sample
原始序列数
Raw reads
过滤后序列数
Clean reads
碱基错误率
Error rate (%)
GC含量
GC content (%)
比对率
Total mapped
C_1 96129064 95045666 0.02 55.57 92039992 (96.84%)
C_2 89832494 88505872 0.02 55.44 85551890 (96.66%)
C_3 79838786 78959024 0.02 55.61 76422986 (96.79%)
SR_1 97621350 96607070 0.02 55.67 93194776 (96.47%)
SR_2 96303100 95196330 0.02 55.72 91799894 (96.43%)
SR_3 95914068 94943432 0.02 55.72 91563514 (96.44%)
SA-SR_1 101359676 100284658 0.02 54.67 96353104 (96.08%)
SA-SR_2 109261866 108220880 0.02 54.75 104057256 (96.15%)
SA-SR_3 93098314 92227658 0.02 54.71 88651196 (96.12%)

图4

不同样本之间的转录组测序数据相关性分析 a: 组内和组间皮尔逊相关性分析; b: 组间基因表达量PCA分析。"

图5

差异表达基因火山图 a: SR与对照; b: SR与SA-SR."

图6

不同组合中DEGs分析 a: 共有差异基因聚类情况; b: SA-SR和SR、SR和对照比较组之间差异表达基因的韦恩图。"

表4

SA-SR vs SR前10个显著富集的GO term"

GO条目
GO_accession
注释描述
Description
P
P-value
上调
Up
下调
Down
类别
Term_type
GO:0009536 质体Plastid 2.28E-95 44 681 细胞组分Cell component
GO:0009507 叶绿体Chloroplast 2.03E-91 40 663 细胞组分Cell component
GO:0009579 类囊体Thylakoid 3.11E-61 34 362 细胞组分Cell component
GO:0042651 类囊体膜Thylakoid membrane 5.71E-56 14 222 细胞组分Cell component
GO:0015979 光合作用Photosynthesis 3.09E-51 34 263 生物过程Cell component
GO:0034357 光合作用膜Photosynthetic membrane 2.99E-49 31 265 细胞组分Cell component
GO:0009534 叶绿体类囊体Chloroplast thylakoid 3.60E-47 8 200 细胞组分Cell component
GO:0031976 质体类囊体Plastid thylakoid 3.60E-47 8 200 细胞组分Cell component
GO:0009532 质体基质Plastid stroma 1.56E-42 6 215 细胞组分Cell component
GO:0009535 叶绿体类囊体膜Chloroplast thylakoid membrane 2.67E-42 8 172 细胞组分Cell component

表5

SR与对照分组前10个显著富集的GO term"

GO条目
GO_accession
注释描述
Description
P
P-value
上调
Up
下调
Down
类别
Type
GO:0009800 肉桂酸生物合成过程
Cinnamic acid biosynthetic process
1.19E-70 35 0 生物过程
Cell bioprocess
GO:0009803 肉桂酸代谢过程
Cinnamic acid metabolic process
1.19E-70 35 0 生物过程
Cell bioprocess
GO:0045548 苯丙氨酸解氨酶活性
Phenylalanine ammonia-lyase activity
1.19E-70 35 0 分子功能
Molecular function
GO:0016301 激酶活性
Kinase activity
1.19E-66 1260 263 分子功能
Molecular function
GO:0006468 蛋白质磷酸化
Protein phosphorylation
9.25E-66 1163 226 生物过程
Molecular function
GO:0004672 蛋白激酶活性
Protein kinase activity
1.48E-65 1163 230 分子功能
Molecular function
GO:0016773 磷酸转移酶活性, 醇基作为受体 4.14E-65 1230 247 分子功能
Molecular function
GO:0016310 磷酸化
Phosphotransferase activity, alcohol group as acceptor
1.76E-58 1208 249 生物过程
Cell bioprocess
GO:0006796 含磷酸盐化合物代谢过程
Phosphate-containing compound metabolic process
9.77E-56 1399 361 生物过程
Cell bioprocess
GO:0006793 磷代谢过程
Phosphorus metabolic process
2.37E-55 1401 361 生物过程
Cell bioprocess

图7

不同组合中差异表达基因的GO富集分析"

图8

两个比较组合差异基因的KEGG通路 a: SA-SR vs SR差异表达基因的KEGG通路富集分析; b: SR与对照分组差异表达基因的KEGG通路富集分析。"

图9

RNA-seq和qRT-PCR的spearman相关性分析"

[1] Wan A, Zhao Z, Chen X, He Z H, Li G B. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis, 2004, 88: 896-904.
doi: 10.1094/PDIS.2004.88.8.896
[2] 万安民, 赵中华, 吴立人. 2002年我国小麦条锈病发生回顾. 植物保护, 2003, 2: 5-8.
Wan A M, Zhao Z H, Wu L R. Reviews of occurrence of wheat stripe rust disease in 2002 in China. Plant Prot, 2003, 2: 5-8. (in Chinese with English abstract)
[3] Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci, 2014, 5: 4.
doi: 10.3389/fpls.2014.00004 pmid: 24478784
[4] Saleem M, Fariduddin Q, Janda T. Multifaceted role of salicylic acid in combating cold stress in plants: a review. J Plant Growth Regul, 2021, 40: 464-485.
doi: 10.1007/s00344-020-10152-x
[5] Khalvandi M, Siosemardeh A, Roohi E, Keramati S. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 2021, 7: e05908.
doi: 10.1016/j.heliyon.2021.e05908
[6] Jayakannan M, Bose J, Babourina O, Zed R, Sergey S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul, 2015, 76: 25-40.
doi: 10.1007/s10725-015-0028-z
[7] White R F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 1979, 99: 410-412.
pmid: 18631626
[8] 范淑琴, 陈曦, 施永军, 陈宸, 黄奔立, 陈夕军. 水杨酸诱导黄瓜生长及对白粉病的防效. 中国瓜菜, 2020, 33(12): 77-81.
Fan S Q, Chen X, Shi Y J, Chen C, Huang B L, Chen X J. Effect of salicylic acid on growth promotion of cucumber and control of powdery mildew. China Cucurbits Veget, 2020, 33(12): 77-81. (in Chinese)
[9] 牛皓, 姜玉梅, 牛吉山. 小麦抗赤霉病遗传育种研究进展. 农业生物技术学报, 2020, 28: 530-542.
Niu H, Jiang Y M, Niu J S. Research advances in the genetics and breeding of wheat (Triticum aestivum) resistance to Fusarium Head Blight. J Agric Biotechnol, 2020, 28: 530-542. (in Chinese with English abstract)
[10] Sakhabutdinova A R, Fatkhutdinova D R, Bezrukova M V. Salicylic acid alleviates leaf rust-inducible oxidative processes in wheat plants. Oxidat Commun, 2008, 31: 895-903.
[11] 刘芃. 小麦水杨酸信号通路介导的抗条锈病机理研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2014.
Liu F. Preliminary Studies on the Mechanism of Salicylic Acid Signaling Pathway in Wheat Resistance Against Stripe Rust Fungus. MS Thesis of Northwest Agriculture & Forestry University, Yangling, Shaanxi, China, 2014 (in Chinese with English abstract).
[12] Liu N, Xu Y, Li Q, Cao Y, Yang D, Liu S, Wang X, Mi Y, Liu Y, Ding C, Liu Y, Li Y, Yuan YW, Gao G, Chen J, Qian W, Zhang X. A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host Microbe, 2022, 30: 1124-1138.
doi: 10.1016/j.chom.2022.07.001
[13] Liu J, Wu X, Fang Y, Liu Y, Bello E O, Li Y, Xiong R, Li Y, Fu Z Q, Wang A, Cheng X. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity. Nat Commun, 2023, 14: 3580.
doi: 10.1038/s41467-023-39254-2 pmid: 37328517
[14] Brunet J, Mundt C C. Disease, frequency-dependent selection, and genetic polymorphisms: experiments with stripe rust and wheat. Evolution, 2000, 54: 406-415.
pmid: 10937217
[15] Peterson R F, Campbell A B, Hannah A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res, 1948, 26: 496-500.
[16] 中华人民共和国食品安全国家标准. GB 5009.124-2016食品安全国家标准——食品中氨基酸的测定. 2016.
National Food Safety Standards of China. GB 5009.124-2016 Determination of Amino Acids in Food of National Food Safety Standard. 2016 (in Chinese).
[17] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[18] Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T. STAR ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635
[19] Givanna H P, Simon A, Paul T P, John E P, Zanini F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics, 2022, 38: 2943-2945.
doi: 10.1093/bioinformatics/btac166 pmid: 35561197
[20] 孙嘉曼, 傅俊范, 王燕平, 周如军, 严雪瑞. 外源水杨酸诱导人参抗锈腐病的生理机制. 沈阳农业大学学报, 2011, 42: 555-558.
Sun J M, Fu J F, Wang Y P, Zhou R J, Yan X R. Physiological mechanism of ginseng resistant to ginseng rusty root rot induced by exogenous salicylic acid. J Shenyang Agric Univ, 2011, 42: 555-558. (in Chinese with English abstract)
[21] Rabbinge R, Hoy M A. A Population model for two-spotted spider mite Tetranychus urticae and its predator metaseiulus occidentalis. Entomol Exp Appl, 1980, 28: 64-81.
doi: 10.1111/eea.1980.28.issue-1
[22] Pan X, Ma J, Su X, Cao P, Chang W R, Liu Z F, Zhang X Z, Li M. Structure of the maize photosystem I supercomplex with light- harvesting complexes I and II. Science, 2018, 360: 1109-1113.
doi: 10.1126/science.aat1156
[23] Ullah C, Tsai C J, Unsicker S B, Xue L, Reichelt M, Gershenzon J, Hammerbacher A. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. New Phytol, 2019, 221: 960-975.
doi: 10.1111/nph.2019.221.issue-2
[24] Gao Z M, Wang X C, Peng Z H, Zheng B, Liu Q. Characterization and primary functional analysis of phenylalanine ammonia-lyase gene from Phyllostachys edulis. Plant Cell Rep, 2012, 31: 1345-1356.
doi: 10.1007/s00299-012-1253-9 pmid: 22555402
[25] Mandal S, Mallick N, Mitra A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem, 2009, 47: 642-649.
doi: 10.1016/j.plaphy.2009.03.001
[26] 江厚龙, 李鹏, 李钠钾, 催伟伟, 张艳, 耿丽娜, 丁伟. 外源诱抗剂对烟草青枯病的诱抗效果研究. 中国农学通报, 2014, 30: 286-290.
doi: 10.11924/j.issn.1000-6850.2014-0736
Jiang H L, Li P, Li N J, Cui W W, Zhang Y, Geng L N, Ding W. Inhibition effects of induced resistance on tobacco resistance to Ralstonia solanacearum. Chin Agric Sci Bull, 2014, 30: 286-290. (in Chinese with English abstract)
[27] Zhang M, Su J, Zhang Y, Xu J, Zhang S Q. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266
[28] Yin Z, Zhu W, Zhang X, Chen X, Ye W. Molecular characterization, expression and interaction of MAPK, MAPKK and MAPKKK genes in upland cotton. Genomics, 2021, 113: 1071-1086.
doi: 10.1016/j.ygeno.2020.11.004 pmid: 33181247
[29] Rodriguez M C, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529
[30] Wang B, Song N, Zhang Q, Wang N, Kang Z S. TaMAPK4 acts as a positive regulator in defense of wheat stripe-rust infection. Front Plant Sci, 2018, 9: 152.
doi: 10.3389/fpls.2018.00152 pmid: 29527215
[1] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[2] 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968.
[3] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[4] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
[5] 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685.
[6] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[7] 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393.
[8] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[9] 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31.
[10] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[11] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[12] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[13] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[14] 项嘉铭, 戴茜, 刘立军. 外源水杨酸提高云麻1号(Cannabis sativa L.)对铜胁迫的耐受性[J]. 作物学报, 2023, 49(7): 1979-1993.
[15] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .