欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2550-2561.doi: 10.3724/SP.J.1006.2024.44032

• 耕作栽培·生理生化 • 上一篇    下一篇

高密度直播油菜不同类型叶片功能探究

黄肖玉1(), 娄洪祥1, 邵东李1, 张哲2, 蒋博3, 肖雅丹1, 常影1, 郭安达1, 赵杰1, 徐正华1, 王晶1, 汪波1, 蒯婕1,*(), 周广生1   

  1. 1华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2全国农业技术推广服务中心, 北京 100125
    3湖北省油菜办公室, 湖北武汉 430070
  • 收稿日期:2024-02-23 接受日期:2024-05-21 出版日期:2024-10-12 网络出版日期:2024-06-04
  • 通讯作者: *蒯婕, E-mail: kuaijie@mail.hzau.edu.cn
  • 作者简介:E-mail: hxy08033121@163.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1600500);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12);湖北省产业技术体系和湖北省重点研发计划项目(2023BBB028)

Exploring the functions of different leaf types of directly-sown rapeseed under high density

HUANG Xiao-Yu1(), LOU Hong-Xiang1, SHAO Dong-Li1, ZHANG Zhe2, JIANG Bo3, XIAO Ya-Dan1, CHANG Ying1, GUO An-Da1, ZHAO Jie1, XU Zheng-Hua1, WANG Jing1, WANG Bo1, KUAI Jie1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2National Agricultural Technical Extension and Service Center, Beijing 100125, China
    3Hubei Province Oilseed Rape Office, Wuhan 430070, Hubei, China
  • Received:2024-02-23 Accepted:2024-05-21 Published:2024-10-12 Published online:2024-06-04
  • Contact: *E-mail: kuaijie@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600500);China Agriculture Research System of MOF and MARA(CARS-12);Earmarked Fund of Hubei Province of China, and the Key Research and Development Program of Hubei Province of China(2023BBB028)

摘要:

合理密植是确保油菜产量和效益的核心, 但过度密植则加重倒伏, 难以实现密植再高产。叶片是油菜干物质累积的重要光合器官, 但高密度条件下, 不同类型叶片对油菜产量及抗倒性的影响尚不明确。本试验以中双11号为材料, 设置2个种植密度(D3: 4.5×105株 hm-2、D5: 7.5×105株 hm-2)、4个剪叶处理(CK: 不剪叶、LP: 剪去一半长柄叶、SP: 剪去一半短柄叶、SL: 剪去一半无柄叶), 探究油菜3种不同类型的叶片对高密度直播油菜产量及抗倒性的影响, 为协调高密度油菜源库关系、高产和倒伏矛盾提供理论依据。结果表明: 同一密度下, 油菜3种不同类型叶片占比均为短柄叶>长柄叶>无柄叶, 当密度由D3增加至D5, 短柄叶减少约2片, 占比由50.6%下降至46.7%。2个密度下, 剪叶均降低单株角果数, 导致单株产量和实收产量的降低, 且以SP处理对产量的影响最大。随着密度增加, SP处理下, 单株产量下降幅度由19.61%增加至37.67%, 实收产量下降幅度由13.65%增加至22.03%。不同剪叶处理, 倒伏指数均增加, 且SP处理显著增加了上部和下部的倒伏指数, 与其他处理相比抗倒性最弱。此外, 单株根系表面积、体积随着密度增加而下降, LP、SP处理下根系表面积和体积均显著下降, 以LP处理影响最大。基于相关性分析结果, 在D3密度下, 剪去短柄叶减少了单株角果数, D5密度下, 剪去短柄叶减少了单株角果数和每角果粒数, 使产量显著下降、抗倒性下降; 剪去长柄叶导致根系表面积、体积显著下降, 不利于产量形成。

关键词: 高密度, 长柄叶, 短柄叶, 根系, 产量, 抗倒性

Abstract:

Optimal planting density is a core technology for ensuring rapeseed yield and production efficiency. However, excessive planting density can worsen lodging of rapeseed and make it challenging to achieve high yields. Leaves play a vital role in photosynthesis and dry matter accumulation in rapeseed, but the effects of different leaf types on yield and lodging resistance under high-density conditions remains unclear. In this study, we selected Zhongshuang 11 and implemented two planting densities (D3: 4.5×105 plants hm-2, D5: 7.5×105 plants hm-2) and four-leaf pruning treatments (CK: no leaf pruning, LP: pruning half of the long-petiole leaves, SP: pruning half of the short-petiole leaves, SL: pruning half of the sessile leaves). We aimed to investigate the effects of these three leaf types on the yield and lodging resistance of directly-sown rapeseed under high density, providing a theoretical basis for managing the source-sink relationship, high-density rapeseed cultivation, and the lodging challenge. The results showed that, at the same density, the proportions of short-petiole leaf > long-petiole leaf > sessile leaf. When the density increased from D3 to D5, about 2 short-petiole leaves were reduced, resulted in a decrease in proportion from 50.6% to 46.7%. Leaf pruning at both densities lead to a reduction in siliques per plant, consequently decreasing the yield per plant and actual yield. Among the pruning treatments, SP had the greatest impact on yield. As density increased, the effect of SP on yield per plant increased from 19.61% to 37.67%, and the effect on actual yield increased from 13.65% to 22.03%. The lodging index increased under different leaf pruning treatments, with SP treatment significantly increasing the lodging index in both the upper and lower parts of the plant, indicating weaker lodging resistance. In addition, the root surface area and volume per plant decreased with increasing density, particularly under LP and SP treatments. Correlation analysis revealed that, under D3 density, pruning short-petiole leaves reduced the number of siliques per plant. Under D5 density, pruning short-petiole leaves and long-petiole leaves resulted in reduced siliques per plant and seed per silique, significantly decreasing both yield and lodging resistance. Pruning long-petiole leaves led to a significant decrease in root surface area and volume, which was unfavorable for yield formation.

Key words: high density, long-petiole leaf, short-petiole leaf, root system, yield, lodging resistance

图1

油菜不同类型叶片示意图(a)和不同类型叶片剪叶处理示意图(b)"

表1

油菜不同类型叶片剪叶数及叶片数的变化"

年份
Year
密度
Density
处理
Treatment
长柄叶
Long-petiole leaf
短柄叶
Short-petiole leaf
无柄叶
Sessile
leaf
总叶数
Total number of leaves
剪叶数
Number of pruned leaves
2021-2022 D3 CK 7.9 14.8 7.2 29.1
LP 3.3 14.8 6.7 25.1 4.0
SP 8.0 8.0 7.1 21.5 7.6
SL 7.8 14.7 3.6 26.0 3.0
D5 CK 8.1 12.6 6.7 28.8
LP 4.1 12.6 6.9 23.5 4.0
SP 8.0 7.1 6.5 21.7 6.7
SL 7.9 12.5 3.6 26.3 3.2
2022-2023 D3 CK 9.1 16.4 6.2 31.7
LP 4.5 15.7 6.2 26.5 4.7
SP 8.4 10.0 5.8 24.2 9.1
SL 9.2 16.1 3.0 28.3 2.8
D5 CK 9.7 14.3 6.2 30.2
LP 4.8 14.2 6.2 25.1 5.1
SP 9.9 6.9 6.4 23.2 7.8
SL 9.6 14.3 3.6 27.6 2.7

图2

不同剪叶处理对油菜产量及产量构成因素的影响 缩写及处理同表1。图上不同小写字母表示不同处理间在0.05概率水平差异显著; *和**分别表示在0.05和0.01概率水平差异显著, NS表示差异不显著。"

表2

不同处理对油菜产量及产量构成的贡献率"

年份
Year
密度Density 处理Treatment 成株率
Survival
rate
单株角果数
Siliques per plant
每角果粒数
Seeds per silique
单株产量
Yield per plant
实收产量Actual
yield
群体角果数
Group silique number
2021-2022 D3 LP -3.91 -10.60 -0.53 -11.50 -0.46 -14.11
SP -6.25 -14.86 -4.71 -20.68 -11.21 -18.18
SL -2.08 -10.23 -4.77 -15.69 -11.00 -11.09
D5 LP 11.76 -16.97 -6.29 -21.73 -15.02 -9.22
SP 9.84 -18.78 -15.63 -28.95 -16.11 -12.73
SL -1.01 -12.92 1.21 -9.70 -12.16 -15.62
2022-2023 D3 LP -1.04 -9.29 -0.85 -15.37 -15.08 -10.20
SP -1.57 -18.09 -3.78 -18.53 -16.08 -19.34
SL -0.69 -12.64 -6.78 -15.55 -13.54 -13.22
D5 LP 11.09 -16.43 -15.42 -29.28 -16.06 -7.17
SP 8.99 -23.52 -31.00 -46.38 -27.95 -16.64
SL 2.59 -13.94 -3.85 -12.55 -4.57 -11.68

图3

不同剪叶处理对油菜群体产量及相关指标的影响 缩写及处理同表1。图上不同小写字母表示不同处理间在0.05概率水平差异显著; *和**分别表示在0.05和0.01概率水平差异显著, NS表示差异不显著。"

图4

不同剪叶处理对油菜抗折力和倒伏指数的影响 缩写及处理同表1。图上不同小写字母表示不同处理间在0.05概率水平差异显著; *和**分别表示在0.05和0.01概率水平差异显著, NS表示差异不显著。"

表3

不同类型叶片对油菜倒伏指数的贡献率"

密度
Density
处理
Treatment
上部倒伏指数Upper lodging index 下部倒伏指数Lower lodging index
2021-2022 2022-2023 2021-2022 2022-2023
D3 LP 4.49 3.12 21.63 4.38
SP 31.66 11.90 31.43 7.57
SL 15.04 2.27 13.88 3.98
D5 LP 15.00 6.62 18.00 3.96
SP 22.63 24.50 27.60 12.78
SL 16.84 9.60 7.20 7.49

图5

不同剪叶处理对油菜根系形态的影响 缩写及处理同表1。BP、SS、BS、FS分别表示处理前、苗期、蕾薹期、花期; a~d为苗期D3和D5密度下, 对照与剪长柄叶(LP)处理, e~h为蕾薹期D3和D5密度下, 对照与剪长柄叶(LP)处理, i~l为花期D3和D5密度下, 对照与剪长柄叶(LP)处理。"

图6

不同剪叶处理对油菜单株产量及相关指标间的相关性 缩写及处理同表1。*、**和***分别表示在0.05、0.01和0.001概率水平相关性显著。"

[1] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625-4632 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.004
[2] 姬建利. 密度和行距配置影响油菜产量和倒伏的机理研究. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Ji J L. Mechanism of Density and Row Spacing Affecting Rapeseed Yield and Lodging. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[3] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.08.004
[4] Khan S, Anwar S, Kuai J, Noman A, Shahid M, Din M, Ali A, Zhou G S. Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci Rep, 2018, 8: 634.
doi: 10.1038/s41598-017-18734-8 pmid: 29330468
[5] Kuai J, Sun Y Y, Zuo Q S, Huang H D, Liao Q X, Wu C Y, Lu J W, Wu J S, Zhou G S. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015, 5: 18835.
doi: 10.1038/srep18835 pmid: 26686007
[6] 陈松林. 长江流域冬油菜适宜密植关键株型指标及参数研究. 华中农业大学硕士学位论文, 湖北武汉, 2020.
Chen S L. Study on Key Plant Type Indexes and Parameters of Winter Rape Suitable for Close Planting in Yangtze River Basin. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract).
[7] 李宏志, 卓从丽, 廖斌, 陈红, 邹康平, 何帮华, 卓国华, 黎芳. 种植密度对不同株型春玉米品种源库关系及产量的影响. 湖南农业科学, 2019, (11): 25-27.
Li H Z, Zhuo C L, Liao B, Chen H, Zou K P, He B H, Zhuo G H, Li F. Effects of planting density on source sink relationship and yield of different plant types of spring maize. Hunan Agric Sci, 2019, (11): 25-27 (in Chinese with English abstract).
[8] 胡立勇, 单文燕, 王维金. 油菜结实特性与库源关系的研究. 中国油料作物学报, 2002, 24(2): 37-42.
Hu L Y, Shan W Y, Wang W J. Characteristics of seed set and source-sink relation of Brassica napus. Chin J Oil Crop Sci, 2002, 24(2): 37-42 (in Chinese with English abstract).
[9] 廉博, 张胜, 张彩彪. 剪叶对春油菜源库关系的影响. 内蒙古农业科技, 2012, (3): 24-27.
Lian B, Zhang S, Zhang C B. Effect of leaf-cutting on spring rape source-sink relationship. Inner Mongolia Agric Sci Technol, 2012, (3): 24-27 (in Chinese with English abstract).
[10] 王瑛. 双低春油菜源库关系的研究. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2006.
Wang Y. Study on the Relationship between Source and Sink of Double-low Spring Rape. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2006 (in Chinese with English abstract).
[11] 陈婷. 油菜叶片和角果光合对其籽粒产量及品质的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Chen T. Influence of Leaf and Silique Photosynthesis on Seeds Yield and Seed Soil Quality of Oilseed Rape. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[12] 王春丽, 王周礼, 陈婷, 杨建利, 陈文杰, 穆建新, 田建华, 赵小光. 甘蓝型油菜生殖生长期叶片和角果光合与产量关系的研究. 西北植物学报, 2016, 36: 1417-1426.
Wang C L, Wang Z L, Chen T, Yang J L, Chen W J, Mu J X, Tian J H, Zhao X G. Relationship between yield and photosynthesis of leaf and silique of different Brassica napus L. varieties during relationship period. Acta Bot Boreali-Occident Sin, 2016, 36: 1417-1426 (in Chinese with English abstract).
[13] 冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. 作物学报, 1992, 18: 250-257.
Leng S H, Zhu G R, Deng X L. Studies on the sources of the dry matter in the seed of rapeseed. Acta Agron Sin, 1992, 18: 250-257 (in Chinese with English abstract).
[14] Iglesias F M, Miralles J. Changes in seed weight in response to different sources: sink ratio in oilseed rape. Int J Agric Res Innov Technol, 2014, 4: 44-52.
[15] Zhang H P, Flottmann S. Source-sink manipulations indicate seed yield in canola is limited by source availability. Eur J Agron, 2018, 96: 70-76.
[16] 郎有忠, 王美娥, 吕川根, 张祖建, 朱庆森. 水稻叶片形态、群体结构和产量对种植密度的响应. 江苏农业学报, 2012, 28(1): 7-11.
Lang Y Z, Wang M E, Lyu C G, Zhang Z J, Zhu Q S. Response of leaf morphology, population structure and yield to planting density in rice. Jiangsu J Agric Sci, 2012, 28(1): 7-11 (in Chinese with English abstract).
[17] 周萍, 崔岭, 王海燕, 钱素菊, 崔亚坤, 陈艳萍, 袁建华. 大豆玉米带状复种模式下种植密度对玉米植株生长和产量的影响. 中国农学通报, 2023, 39(14): 1-5.
doi: 10.11924/j.issn.1000-6850.casb2022-1029
Zhou P, Cui L, Wang H Y, Qian S J, Cui Y K, Chen Y P, Yuan J H. Effects of planting density on plant growth and yield of maize in maize-soybean strip intercropping system. Chin Agric Sci Bull, 2023, 39(14): 1-5 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2022-1029
[18] 王锐. 油菜群体冠层结构特性及光能利用率的研究. 华中农业大学博士学位论文, 湖北武汉, 2015.
Wang R. The Study on Characteristics of the Canopy Structure and Radiation Use Efficiency for Canola Plant Population. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[19] Edwards J, Hertel K. Canola Growth & Development. Australia: Department of Primary Industries State of New South Wales, 2011. pp 39-54.
[20] Li Y Y, Ming B, Fan P P, Liu Y, Wang K R, Hou P, Xue J, Li S K, Xie R Z. Quantifying contributions of leaf area and longevity to leaf area duration under increased planting density and nitrogen input regimens during maize yield improvement. Field Crops Res, 2022, 283: 108551.
[21] 傅寿仲. 油菜的光合作用和产量形成. 江苏农业科学, 1980, (6): 37-45.
Fu S Z. Photosynthesis and yield formation of rapeseed. Jiangsu Agric Sci, 1980, (6): 37-45 (in Chinese).
[22] 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社, 1987. pp 212-555.
Liu H L. Practical Cultivation of Rapeseed. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 212-555 (in Chinese).
[23] 龚宏伟, 张振兰. 甘蓝型杂交油菜角果的源库特性研究. 扬州大学学报(农业与生命科学版), 2011, 32(4): 51-54.
Gong H W, Zhang Z L. Characteristics of source-sink of pods in hybrid Brassica napus L. J Yangzhou Univ (Agric Life Sci Edn), 2011, 32(4): 51-54 (in Chinese with English abstract).
[24] 崔晓峰, 黄海. 叶发育的遗传调控机理研究进展. 植物生理学报, 2011, 47: 631-640.
Cui X F, Huang H. Recent progress in genetic control of leaf development. Plant Physiol J, 2011, 47: 631-640 (in Chinese with English abstract).
[25] 李丹. 玉米叶片数遗传结构的解析及目标QTL的克隆. 中国农业大学博士学位论文, 北京, 2015.
Li D. Analysis of Genetic structure of Maize Leaf Number and Target QTL Cloning. PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[26] 张宇文, 张玉俊, 王可珍, 郭亚茹, 赵志忠. 甘蓝型油菜生育后期叶片对产量的影响. 中国油料作物学报, 1996, 18(1): 89-90.
Zhang Y W, Zhang Y J, Wang K Z, Guo Y R, Zhao Z Z. Leaves effect on yield of rape (Brassica napus) in late development phase. Chin J Oil Crop Sci, 1996, 18(1): 89-90 (in Chinese with English abstract).
[27] 胡宝成, 李强生, 赵仁渠, 陈凤祥. 花期去叶对甘蓝型杂交油菜经济性状和品质性状的影响. 安徽农业科学, 1991, 19(3): 235-238.
Hu B C, Li Q S, Zhao R Q, Chen F X. Effect of removing leaves on economy & quality properties of hybrid B. napus at the flowering stage. J Anhui Agric Sci, 1991, 19(3): 235-238 (in Chinese with English abstract).
[28] 龚月桦, 高俊凤. 高等植物光合同化物的运输与分配. 西北植物学报, 1999, 19: 564-570.
Gong Y H, Gao J F. Transport and partitioning of photo assimilate in higher plant. Acta Bot Boreali-Occident Sin, 1999, 19: 564-570 (in Chinese with English abstract).
[29] 李俊, 张春雷, 赵懿, 马霓, 余利平. 油菜短柄叶光合衰退及其对产量的影响. 中国油料作物学报, 2011, 33: 464-469.
Li J, Zhang C L, Zhao Y, Ma N, Yu L P. Short-stalk leaf photosynthesis declining and its effect on rapeseed yield. Chin J Oil Crop Sci, 2011, 33: 464-469 (in Chinese with English abstract).
[30] 陈传永, 侯海鹏, 李强, 朱平, 张振勇, 董志强, 赵明. 种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响. 作物学报, 2010, 36: 871-878.
Chen C Y, Hou H P, Li Q, Zhu P, Zhang Z Y, Dong Z Q, Zhao M. Effects of panting density on photosynthetic characteristics and changes of carbon and nitrogen in leaf of different corn hybrids. Acta Agron Sin, 2010, 36: 871-878 (in Chinese with English abstract).
[31] 耿广涛, 宋桂成, 董文庆, 江晨亮, 许晓明, 唐灿明. 种植密度对不同叶位玉米叶片光合特性的影响. 核农学报, 2015, 29: 1589-1595.
doi: 10.11869/j.issn.100-8551.2015.08.1589
Geng G T, Song G C, Dong W Q, Jiang C L, Xu X M, Tang C M. Effect of different plant density on leaves photosynthesis of maize (Zea mays L.) at different leaves position. J Nucl Agric Sci, 2015, 29: 1589-1595 (in Chinese with English abstract).
[32] 吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制. 作物学报, 2019, 45: 248-255.
doi: 10.3724/SP.J.1006.2019.83042
Wu H Y, Zhang Y J, Zhang W F, Wang K R, Li S K, Jiang C D. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field. Acta Agron Sin, 2019, 45: 248-255 (in Chinese with English abstract).
[33] 田永超, 曹卫星, 王绍华, 朱艳. 不同水、氮条件下水稻不同叶位水、氮含量及光合速率的变化特征. 作物学报, 2004, 30: 1129-1134.
Tian Y C, Cao W X, Wang S H, Zhu Y. Variation of water and nitrogen contents & photosynthesis at different position leaves of rice under different soil water and nitrogen conditions. Acta Agron Sin, 2004, 30: 1129-1134 (in Chinese with English abstract).
[34] 张雪松, 申双和, 宋洁, 周晓冬, 李永秀. 棉花冠层阴阳叶空间分布的日变化及其对光合作用的影响. 大气科学学报, 2010, 33: 180-185.
Zhang X S, Shen S H, Song J, Zhou X D, Li Y X. Evaluation of daily gross canopy photosynthesis in a cotton field with a two- leaf-multilayer model. Trans Atmosph Sci, 2010, 33: 180-185 (in Chinese with English abstract).
[35] Chen S G, Shao B Y, Impens I, Ceulemans R. Effects of plant canopy structure on light interception and photosynthesis. J Quant Spectrosc Radiat Transfer, 1994, 52: 115-123.
[36] 陈新军, 戚存扣, 浦惠明, 张洁夫, 高建芹, 傅寿仲. 甘蓝型油菜抗倒性评价及抗倒性与株型结构的关系. 中国油料作物学报, 2007, 29: 54-57.
Chen X J, Qi C K, Pu H M, Zhang J F, Gao J Q, Fu S Z. Evaluation of lodging resistance in rapeseed (Brassica napus L.) and relationship between plant architecture and lodging resistance. Chin J Oil Crop Sci, 2007, 29: 54-57 (in Chinese with English abstract).
[37] 马霓, 李玲, 徐军, 李俊, 余利平, 李光明, 张春雷. 甘蓝型油菜抗倒伏性及农艺性状研究. 作物杂志, 2010, (6): 36-41.
Ma N, Li L, Xu J, Li J, Yu L P, Li G M, Zhang C L. Researches on the lodging resistance and agronomic traits of winter rape (Brassica napus L.). Crops, 2010, (6): 36-41 (in Chinese with English abstract).
[38] 王学芳, 郑磊, 张智, 张耀文, 田建华. 甘蓝型油菜抗倒性及其与株型结构的关系研究. 江西农业学报, 2016, 28(9): 9-13.
Wang X F, Zheng L, Zhang Z, Zhang Y W, Tian J H. Research on relationship between lodging resistance and plant architecture of Brassica napus. Acta Agric Jiangxi, 2016, 28(9): 9-13 (in Chinese with English abstract).
[39] 郭娜. 甘蓝型油菜株型和产量性状评价及全基因组关联分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
Guo N. Comprehensive Evaluation and Genome-wide Association Study of Major Plant-type and Yield Traits in Brassica napus L. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[40] 郭娜, 左凯峰, 张淼, 张冰冰, 秦梦凡, 马宁, 刘翔, 李青青, 黄镇, 徐爱遐. 甘蓝型油菜主要株型和产量性状的综合分析. 西北农业学报, 2020, 29: 898-906.
Guo N, Zuo K F, Zhang M, Zhang B B, Qin M F, Ma N, Liu X, Li Q Q, Huang Z, Xu A X. Comprehensive analysis of major plant-type and yield traits in Brassica napus L. Acta Agric Boreali-Occident Sin, 2020, 29: 898-906 (in Chinese with English abstract).
[41] 王海琦. 减源对密植夏玉米茎秆性状与抗倒伏性能的调控机制研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
Wang H Q. Regulation Mechanism of Reduced Source on Quality Characters and Lodging Resistance of Densely Planted Summer Maize Stalks. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[42] 王学芳, 田建华, 董育红, 关周博, 杨丽. 不同密度紧凑型油菜的源库特征及与收获指数的相关研究. 中国农学通报, 2020, 36(18): 33-38.
doi: 10.11924/j.issn.1000-6850.casb19040030
Wang X F, Tian J H, Dong Y H, Guan Z B, Yang L. Compact rapeseed under different densities: sink-source characteristics and their correlation with harvest index. Chin Agric Sci Bull, 2020, 36(18): 33-38 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb19040030
[43] Wu W, Duncan R W, Ma B L. Quantification of canola root morphological traits under heat and drought stresses with electrical measurements. Plant Soil, 2017, 415: 229-244.
[44] Wu W, Ma B L, Whalen J K. Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture. Adv Agron, 2018, 151: 87-157.
[45] Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol, 2006, 57: 675-709.
pmid: 16669778
[46] Wind J, Smeekens S, Hanson J. Sucrose: metabolite and signaling molecule. Phytochemistry, 2010, 71: 1610-1614.
doi: 10.1016/j.phytochem.2010.07.007 pmid: 20696445
[47] Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109: 11217-11221.
doi: 10.1073/pnas.1203746109 pmid: 22733756
[48] 刘胜群, 宋凤斌, 王燕. 玉米根系性状与地上部性状的相关性研究. 吉林农业大学学报, 2007, 29: 1-6.
Liu S Q, Song F B, Wang Y. Correlations between characters of roots and those of aerial parts of maize varieties. J Jilin Agric Univ, 2007, 29: 1-6 (in Chinese with English abstract).
[1] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[2] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[3] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[4] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[5] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[6] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[7] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[8] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[9] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[10] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[11] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[12] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[13] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[14] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[15] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!