作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2111-2127.doi: 10.3724/SP.J.1006.2025.41069
张飞飞1(), 何万龙1, 焦文娟1, 白斌2, 耿洪伟1, 程宇坤1,*(
)
ZHANG Fei-Fei1(), HE Wan-Long1, JIAO Wen-Juan1, BAI Bin2, GENG Hong-Wei1, CHENG Yu-Kun1,*(
)
摘要:
小麦条锈病是由条形柄锈菌小麦专化型(Puccinia striiformis f. sp. Tritici)引起的真菌病害, 是小麦生产中主要病害之一。利用元分析(meta-analysis)对已报道的小麦条锈病抗病数量性状位点(quantitative trait locus, QTL)和已知抗病基因(Yr)进行统合分析, 将480个不同分子标记类型QTL通过构建的参考图谱进行映射, 获得meta-QTL (meta-quantitative trait locus, MQTL) 90个, 其中16个与严重度(disease severity, DS)相关、10个与反应型(infection type, IT)相关、7个与病程曲线下面积相关(area under disease progress curve, AUDPC)、3个与其他抗条锈病性状相关; 有19个同时与DS和IT共相关、20个与DS和AUDPC共相关、15个与IT和AUDPC共相关。获得的MQTL非均匀分布于21条染色体上, 部分MQTL聚合成簇; 解释表型变异率范围2.00%~63.01%, 置信区间范围为0.01~24.60 cM; 映射的MQTL包含13个抗病基因: Yr5, Yr7, Yr17, Yr18, Yr28, Yr29, Yr30, Yr44, Yr48, Yr52, Yr54, Yr67和Yr82。进一步对MQTL进行候选基因分析, 鉴定了72个候选基因(candidate gene, CG), 功能注释和表达模式分析发现, CG编码的蛋白质含有与抗病相关的如NBS-LRR结构域、WRKY结构域、F-box结构域、糖转运蛋白等; 并且研究了CG在小麦发育过程中不同叶片组织中的表达情况。本研究通过分子标记辅助育种将抗条锈病基因或QTL聚合培育获得小麦抗病品种, 为有效提高小麦抗病水平、保障粮食安全提供参考。
[1] | Wellings C R. Global status of stripe rust: a review of historical and current threats. Euphytica, 2011, 179: 129-141. |
[2] | Rapilly F. Yellow rust epidemiology. Annu Rev Phytopathol, 1979, 17: 59-73. |
[3] | Rowlitsch A, Bushnell W. Volume II. The Cereal Rusts. Volume II. Diseases, Distribution, Epidemiology and Control. London: Academic Press, 1985. |
[4] | 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002. pp 370-373. |
Li Z Q, Zeng S M. Wheat Rusts in China. Beijing: China Agriculture Press, 2002. pp 370-373 (in Chinese). | |
[5] | 刘万才, 王保通, 赵中华, 李跃, 康振生. 我国小麦条锈病历次大流行的历史回顾与对策建议. 中国植保导刊, 2022, 42(6): 21-27. |
Liu W C, Wang B T, Zhao Z H, Li Y, Kang Z S. Historical review and countermeasures of wheat stripe rust epidemics in China. China Plant Prot, 2022, 42(6): 21-27 (in Chinese with English abstract). | |
[6] | Zeng Q D, Zhao J, Wu J H, Zhan G M, Han D J, Kang Z S. Wheat stripe rust and integration of sustainable control strategies in China. Fron Agric Sci Eng, 2022, 9: 37. |
[7] |
Moore J W, Herrera-Foessel S, Lan C X, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet, 2015, 47: 1494-1498.
doi: 10.1038/ng.3439 pmid: 26551671 |
[8] | Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S S, Feng L H, Frenkel Z, Krugman T, Lidzbarsky G, et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun, 2018, 9: 3735. |
[9] |
Zhang C Z, Huang L, Zhang H F, Hao Q Q, Lyu B, Wang M N, Epstein L, Liu M, Kou C L, Qi J, et al. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat Commun, 2019, 10: 4023.
doi: 10.1038/s41467-019-11872-9 pmid: 31492844 |
[10] | Kumar A, Saini D K, Saripalli G, Sharma P K, Balyan H S, Gupta P K. Meta-QTLs, ortho-meta QTLs and related candidate genes for yield and its component traits under water stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants, 2023, 29: 525-542. |
[11] | Glass G V. Primary, secondary, and meta-analysis of research. Educ Res, 1976, 5: 3-8. |
[12] |
Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 2004, 20: 2324-2326.
doi: 10.1093/bioinformatics/bth230 pmid: 15059820 |
[13] | Saini D K, Srivastava P, Pal N, Gupta P K. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theor Appl Genet, 2022, 135: 1049-1081. |
[14] |
Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169-2185.
doi: 10.1534/genetics.104.032375 pmid: 15611184 |
[15] | 吴琼, 齐照明, 刘春燕, 胡国华, 陈庆山. 基于元分析的大豆生育期QTL的整合. 作物学报, 2009, 35: 1418-1424. |
Wu Q, Qi Z M, Liu C Y, Hu G H, Chen Q S. An integrated QTL map of growth stage in soybean [Glycine max (L.) merr.]: constructed through meta-analysis. Acta Agron Sin, 2009, 35: 1418-1424 (in Chinese with English abstract). | |
[16] | 倪胜利, 何瑞, 刘媛, 张沛沛, 李兴茂, 杨德龙. 不同水分条件下小麦粒重QTL定位及其元分析. 甘肃农业大学学报, 2021, 56: 45-54. |
Ni S L, He R, Liu Y, Zhang P P, Li X M, Yang D L. QTL mapping and meta-analysis for grain weight of wheat under different moisture conditions. J Gansu Agr Univ, 2021, 56: 45-54 (in Chinese with English abstract). | |
[17] | Amo A, Soriano J M. Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. Plant Genome, 2022, 15: 463-473. |
[18] |
Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000, 155: 463-473.
doi: 10.1093/genetics/155.1.463 pmid: 10790417 |
[19] |
刘志勇, 张怀志, 白斌, 李俊, 黄林, 徐智斌, 陈永兴, 刘旭, 曹廷杰, 李淼淼, 等. 中国小麦抗条锈病基因育种利用现状与策略. 中国农业科学, 2024, 57: 34-51.
doi: 10.3864/j.issn.0578-1752.2024.01.004 |
Liu Z Y, Zhang H Z, Bai B, Li J, Huang L, Xu Z B, Chen Y X, Liu X, Cao T J, Li M M, et al. Current status and strategies for utilization of stripe rust resistance genes in wheat breeding program of China. Sci Agric Sin, 2024, 57: 34-51 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.01.004 |
|
[20] | 赵霞, 王长彪, 赵兴华, 刘江, 崔婷, 任永康, 牛瑜琦, 唐朝晖. 小麦抗病相关基因聚合育种的研究进展. 山西农业科学, 2017, 45: 308-313. |
Zhao X, Wang C B, Zhao X H, Liu J, Cui T, Ren Y K, Niu Y Q, Tang Z H. Research progress on pyramiding breeding of disease resistance related genes in wheat. J Shanxi Agric Sci, 2017, 45: 308-313 (in Chinese with English abstract). | |
[21] | 鲁秀梅, 张宁, 陈劲枫, 钱春桃. 作物基因聚合育种的研究进. 分子植物育种, 2017, 15: 1445-1454. |
Lu X M, Zhang N, Chen J F, Qian C T. The research progress in crops pyramiding breeding. Mol Plant Breed, 2017, 15: 1445-1454 (in Chinese with English abstract). | |
[22] |
Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet, 2005, 110: 550-560.
doi: 10.1007/s00122-004-1871-x pmid: 15655666 |
[23] |
Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114.
doi: 10.1007/s00122-004-1740-7 pmid: 15490101 |
[24] |
Franco M F, Polacco A N, Campos P E, Pontaroli A C, Vanzetti L S. Genome-wide association study for resistance in bread wheat (Triticum aestivum L.) to stripe rust (Puccinia striiformis f. sp. tritici) races in Argentina. BMC Plant Biol, 2022, 22: 543.
doi: 10.1186/s12870-022-03916-y pmid: 36434507 |
[25] |
Cavanagh C R, Chao S, Wang S C, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057-8062.
doi: 10.1073/pnas.1217133110 pmid: 23630259 |
[26] |
Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, et al. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017, 7: 3788.
doi: 10.1038/s41598-017-04028-6 pmid: 28630475 |
[27] |
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787-796.
doi: 10.1111/pbi.12183 pmid: 24646323 |
[28] |
Burridge A J, Winfield M O, Allen A M, Wilkinson P A, Barker G L A, Coghill J, Waterfall C, Edwards K J. High-density SNP genotyping array for hexaploid wheat and its relatives. Methods Mol Biol, 2017, 1679: 293-306.
doi: 10.1007/978-1-4939-7337-8_19 pmid: 28913809 |
[29] | Veyrieras J B, Goffinet B, Charcosset A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics, 2007, 8: 49. |
[30] |
Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genetics, 1997, 27: 125-132.
doi: 10.1023/a:1025685324830 pmid: 9145551 |
[31] | Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H T, Arelli P R. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci, 2006, 46: 595-602. |
[32] | Ramírez-González R H, Borrill P, Lang D, Harrington S A, Brinton J, Venturini L, Davey M, Jacobs J, Van Ex F, Pasha A, et al. The transcriptional landscape of polyploid wheat. Science, 2018, 361: eaar6089. |
[33] |
Yang Y, Amo A, Wei D, Chai Y M, Zheng J, Qiao P F, Cui C G, Lu S, Chen L, Hu Y G. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor Appl Genet, 2021, 134: 3083-3109.
doi: 10.1007/s00122-021-03881-4 pmid: 34142166 |
[34] | Saini D K, Chahal A, Pal N, Srivastava P, Gupta P K. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat (Triticum aestivum L.). Mol Breed, 2022, 42: 11. |
[35] | Pal N, Jan I, Saini D K, Kumar K, Kumar A, Sharma P K, Kumar S, Balyan H S, Gupta P K. Meta-QTLs for multiple disease resistance involving three rusts in common wheat (Triticum aestivum L.). Theor Applied Genet, 2022, 135: 2385-2405. |
[36] |
Soriano J M, Royo C. Dissecting the genetic architecture of leaf rust resistance in wheat by QTL meta-analysis. Phytopathology, 2015, 105: 1585-1593.
doi: 10.1094/PHYTO-05-15-0130-R pmid: 26571424 |
[37] |
Liu Y, Salsman E, Wang R H, Galagedara N, Zhang Q J, Fiedler J D, Liu Z H, Xu S, Faris J D, Li X H. Meta-QTL analysis of tan spot resistance in wheat. Theor Appl Genet, 2020, 133: 2363-2375.
doi: 10.1007/s00122-020-03604-1 pmid: 32436020 |
[38] | Venske E, Dos Santos R S, Farias D D R, Rother V, da Maia L C, Pegoraro C, Costa de Oliveira A. Meta-analysis of the QTLome of fusarium head blight resistance in bread wheat: refining the current puzzle. Front Plant Sci, 2019, 10: 727. |
[39] |
Zheng T, Hua C, Li L, Sun Z X, Yuan M M, Bai G H, Humphreys G, Li T. Integration of meta-QTL discovery with omics: towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop J, 2021, 9: 739-749.
doi: 10.1016/j.cj.2020.10.006 |
[40] | Salvi S, Tuberosa R. The crop QTLome comes of age. Curr Opin Biotechnol, 2015, 32: 179-185. |
[41] | Kumar S, Saini D K, Jan F, Jan S, Tahir M, Djalovic I, Latkovic D, Khan M A, Kumar S, Vikas V K, et al. Comprehensive meta- QTL analysis for dissecting the genetic architecture of stripe rust resistance in bread wheat. BMC Genomics, 2023, 24: 259. |
[42] |
程宇坤, 姚方杰, 叶雪玲, 江千涛, 李伟, 邓梅, 魏育明, 陈国跃. 小麦抗条锈病一致性数量性状位点(MQTL)图谱构建. 植物病理学报, 2019, 49: 632-649.
doi: 10.13926/j.cnki.apps.000292 |
Cheng Y K, Yao F J, Ye X L, Jiang Q T, Li W, Deng M, Wei Y M, Chen G Y. Construction of linkage map of the meta quantitative trait loci (MQTL) on stripe rust resistance in wheat (Triticum aestivum L.). Acta Phytopathol Sin, 2019, 49: 632-649 (in Chinese with English abstract). | |
[43] |
Jan I, Saripalli G, Kumar K, Kumar A, Singh R, Batra R, Sharma P K, Balyan H S, Gupta P K. Meta-QTLs and candidate genes for stripe rust resistance in wheat. Sci Rep, 2021, 11: 22923.
doi: 10.1038/s41598-021-02049-w pmid: 34824302 |
[44] | Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, et al. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant, 2014, 7: 1740-1755. |
[45] |
Garcia A V, Al-Yousif M, Hirt H. Role of AGC kinases in plant growth and stress responses. Cell Mol Life Sci, 2012, 69: 3259-3267.
doi: 10.1007/s00018-012-1093-3 pmid: 22847330 |
[46] | Gupta S K, Rai A K, Kanwar S S, Sharma T R. Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS One, 2012, 7: e42578. |
[47] | Gunupuru L R, Arunachalam C, Malla K B, Kahla A, Perochon A, Jia J G, Thapa G, Doohan F M. A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield. PLoS One, 2018, 13: e0204992. |
[48] | Liu J, Zhi P H, Wang X Y, Fan Q X, Chang C. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeria graminis f. sp. tritici. J Exp Bot, 2019, 70: 255-268. |
[49] | Liao Z H, Wang L, Li C Z, Cao M J, Wang J N, Yao Z L, Zhou S Y, Zhou G X, Zhang D Y, Lou Y G. The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice. Plant Cell Environ, 2022, 45: 2827-2840. |
[50] | Wang J H, Wang J J, Li J, Shang H S, Chen X H, Hu X P. The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1. Plant J, 2021, 108: 1241-1255. |
[51] | Chen H, Pan X W, Wang F F, Liu C K, Wang X, Li Y S, Zhang Q Y. Novel QTL and meta-QTL mapping for major quality traits in soybean. Front Plant Sci, 2021, 12: 774270. |
[52] | Wang Y J, Xu J, Deng D X, Ding H D, Bian Y L, Yin Z T, Wu Y R, Zhou B, Zhao Y. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta, 2016, 243: 459-471. |
[53] | Gyawali S, Verma R P S, Kumar S, Bhardwaj S C, Gangwar O P, Selvakumar R, Shekhawat P S, Rehman S, Sharma-Poudyal D. Seedling and adult-plant stage resistance of a world collection of barley genotypes to stripe rust. J Phytopathol, 2018, 166: 18-27. |
[54] | Alemu S K, Huluka A B, Tesfaye K, Haileselassie T, Uauy C. Genome-wide association mapping identifies yellow rust resistance loci in Ethiopian durum wheat germplasm. PLoS One, 2021, 16: e0243675. |
[55] | Habib M, Awan F S, Sadia B, Zia M A. Genome-wide association mapping for stripe rust resistance in Pakistani spring wheat genotypes. Plants, 2020, 9: 1056. |
[56] |
Jia M J, Yang L J, Zhang W, Rosewarne G, Li J H, Yang E N, Chen L, Wang W X, Liu Y K, Tong H W, et al. Genome-wide association analysis of stripe rust resistance in modern Chinese wheat. BMC Plant Biol, 2020, 20: 491.
doi: 10.1186/s12870-020-02693-w pmid: 33109074 |
[57] |
Juliana P, Singh R P, Huerta-Espino J, Bhavani S, Randhawa M S, Kumar U, Joshi A K, Bhati P K, Mir H E V, Mishra C N, et al Genome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, kenya and Mexico. Sci Rep, 2020, 10: 10908.
doi: 10.1038/s41598-020-67874-x pmid: 32616836 |
[58] |
Ledesma-Ramírez L, Solís-Moya E, Iturriaga G, Sehgal D, Reyes-Valdes M H, Montero-Tavera V, Sansaloni C P, Burgueño J, Ortiz C, Aguirre-Mancilla C L, et al. GWAS to identify genetic loci for resistance to yellow rust in wheat pre-breeding lines derived from diverse exotic crosses. Front Plant Sci, 2019, 10: 1390.
doi: 10.3389/fpls.2019.01390 pmid: 31781137 |
[59] | Maccaferri M, Zhang J L, Bulli P, Abate Z, Chao S A M, Cantu D R O, Bossolini E, Chen X M, Pumphrey M, Dubcovsky J. A genome-wide association study of resistance to stripe rust (puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3: Genes Genom Genet, 2015, 5: 449-465. |
[60] | Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya F C. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One, 2014, 9: e105593. |
[61] | Zhang P P, Yan X C, Gebrewahid T W, Zhou Y, Yang E N, Xia X C, He Z H, Li Z F, Liu D Q. Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array. Theor App Genet, 2021, 134: 1233-1251. |
[62] | Miedaner T, Rapp M, Flath K, Longin C F H, Würschum T. Genetic architecture of yellow and stem rust resistance in a durum wheat diversity panel. Euphytica, 2019, 215: 71. |
[63] | Genievskaya Y, Turuspekov Y, Rsaliyev A, Abugalieva S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of south Kazakhstan. PeerJ, 2020, 8: e9820. |
[64] | Kankwatsa P, Singh D, Thomson P C, Babiker E M, Bonman J M, Newcomb M, Park R F. Characterization and genome-wide association mapping of resistance to leaf rust, stem rust and stripe rust in a geographically diverse collection of spring wheat landraces. Mole Breed, 2017, 37: 113. |
[65] |
Kumar D, Kumar A, Chhokar V, Gangwar O P, Bhardwaj S C, Sivasamy M, Prasad S V S, Prakasha T L, Khan H, Singh R, et al. Genome-wide association studies in diverse spring wheat panel for stripe, stem, and leaf rust resistance. Front Plant Sci, 2020, 11: 748.
doi: 10.3389/fpls.2020.00748 pmid: 32582265 |
[66] | Tomar V, Dhillon G S, Singh D, Singh R P, Poland J, Chaudhary A A, Bhati P K, Joshi A K, Kumar U. Evaluations of genomic prediction and identification of new loci for resistance to stripe rust disease in wheat (Triticum aestivum L.). Front Genet, 2021, 12. |
[67] | Aoun M, Chen X M, Somo M, Xu S S, Li X H, Elias E M. Novel stripe rust all-stage resistance loci identified in a worldwide collection of durum wheat using genome-wide association mapping. Plant Genome, 2021, 14: e20136. |
[68] | Jambuthenne D T, Riaz A, Athiyannan N, Alahmad S, Ng W L, Ziems L, Afanasenko O, Periyannan S K, Aitken E, Platz G, et al. Mining the vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. Theor App Genet, 2022, 135: 1355-1373. |
[69] | Qaiser R, Akram Z, Asad S, Haq I U, Malik S I, Fayyaz M, Sufiyan M, Khattak S H, Sandhu K S, Sidhu G S. Genome-wide association mapping and population structure for stripe rust in pakistani wheat germplasm. Pakistan J Bot, 2022, 54. |
[70] |
Wang Y Q, Yu C, Cheng Y K, Yao F J, Long L, Wu Y, Li J, Li H, Wang J R, Jiang Q T, et al. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genomics, 2021, 22: 34.
doi: 10.1186/s12864-020-07331-1 pmid: 33413106 |
[71] | Tene M, Adhikari E, Cobo N, Jordan K W, Matny O, del Blanco I A, Roter J, Ezrati S, Govta L, Manisterski J, et al. GWAS for stripe rust resistance in wild emmer wheat (Triticum dicoccoides) population: obstacles and solutions. Crops, 2022, 2: 42-61. |
[72] |
Zhou C, Liu D, Zhang X, Wu Q M, Liu S J, Zeng Q D, Wang Q L, Wang C F, Li C L, Singh R P, et al. Combined linkage and association mapping reveals two major QTL for stripe rust adult plant resistance in Shaanmai 155 and their haplotype variation in common wheat germplasm. Crop J, 2022, 10: 783-792.
doi: 10.1016/j.cj.2021.09.006 |
[73] | Yao F J, Guan F N, Duan L Y, Long L, Tang H, Jiang Y F, Li H, Jiang Q T, Wang J R, Qi P F, et al. Genome-wide association analysis of stable stripe rust resistance loci in a Chinese wheat landrace panel using the 660K SNP array. Front Plant Sci, 2021, 12. |
[74] | El Messoadi K, El Hanafi S, Gataa Z E, Kehel Z, Bouhouch Y, Tadesse W. Genome wide association study for stripe rust resistance in spring bread wheat (Triticum aestivum L.). J Plant Pathol, 2022, 104: 1049-1059. |
[75] | Mehrabi A A, Steffenson B J, Pour-Aboughadareh A, Matny O, Rahmatov M. Genome-wide association study identifies two loci for stripe rust resistance in a durum wheat panel from Iran. App Sci, 2022, 12: 4963. |
[76] | El Messoadi K, Rochdi A, El Yacoubi H, Wuletaw T. Genome wide association study for stripe rust resistance in elite spring bread wheat genotypes (Triticum aestivum L.) in Morocco. Physiol Mol Plant Pathol, 2023, 127: 102106. |
[1] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
[2] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
[3] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. |
[4] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. |
[5] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
[6] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. |
[7] | 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047. |
[8] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
[9] | 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826. |
[10] | 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933. |
[11] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
[12] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. |
[13] | 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913. |
[14] | 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466. |
[15] | 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547. |
|