作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2128-2138.doi: 10.3724/SP.J.1006.2025.44199
李宜谦2(), 徐守振1, 刘萍1, 马麒1, 谢斌1, 陈红1,*(
)
LI Yi-Qian2(), XU Shou-Zhen1, LIU Ping1, MA Qi1, XIE Bin1, CHEN Hong1,*(
)
摘要:
棉花经济产量主要受单株铃数、单铃重和衣分等产量构成因素的影响, 解析棉花产量构成因素的遗传机制对指导分子育种具有重要意义。本研究以612份陆地棉品种(系)构成的自然群体为研究材料, 利用基于液相探针杂交的40K SNP芯片进行基因型分型, 并在5个自然环境下调查单株铃数、单铃重、衣分及籽棉产量等性状。通过全基因组关联分析共检测到6个显著关联位点, 包括与单株铃数相关的2个位点(A03、A05染色体)、与单铃重相关的1个位点(A07染色体)、与衣分相关的1个位点(D01染色体)和与籽棉产量相关的2个位点(A05、D07染色体)。其中, 位于A07染色体89.01~90.45 Mb区间的QTL在5个环境中与单铃重显著关联(P = 5.3646×10-8), 表现出较高的稳定性。通过单倍型分析发现该区间存在2个主要单倍型, 携带有利单倍型的材料平均单铃重显著增加0.64 g。结合深度重测序数据和转录组数据分析, 在该区间鉴定到7个候选基因, 并确定了可用于分子标记开发的关键SNP位点。本研究不仅丰富了陆地棉产量性状的遗传解析结果, 而且为高产育种提供了重要的分子信息。
[1] | Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739-748. |
[2] | Lam H M, Xu X, Liu X, Chen W B, Yang G H, Wong F L, Li M W, He W M, Qin N, Wang B, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053-1059. |
[3] |
Fang L, Wang Q, Hu Y, Jia Y H, Chen J D, Liu B L, Zhang Z Y, Guan X Y, Chen S Q, Zhou B L, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet, 2017, 49: 1089-1098.
doi: 10.1038/ng.3887 pmid: 28581501 |
[4] |
Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018, 50: 803-813.
doi: 10.1038/s41588-018-0119-7 pmid: 29736016 |
[5] | Han Z G, Chen H, Cao Y W, He L, Si Z F, Hu Y, Lin H, Ning X Z, Li J L, Ma Q, et al. Genomic insights into genetic improvement of upland cotton in the world’s largest growing region. Ind Crops Prod, 2022, 183: 114929. |
[6] | Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127. |
[7] | Si Z F, Jin S K, Li J Y, Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629. |
[8] | Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531-537. |
[9] |
Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348-354.
doi: 10.1038/ng.548 pmid: 20208533 |
[10] | Wang M J, Tu L L, Lin M, Lin Z X, Wang P C, Yang Q Y, Ye Z X, Shen C, Li J Y, Zhang L, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet, 2017, 49: 579-587. |
[11] | Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229. |
[12] |
Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet, 2021, 53: 1385-1391.
doi: 10.1038/s41588-021-00910-2 pmid: 34373642 |
[13] |
Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 2015, 4: 7.
doi: 10.1186/s13742-015-0047-8 pmid: 25722852 |
[14] | Wang K, Li M Y, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010, 38: e164. |
[15] | Dai F, Chen J D, Zhang Z Q, Liu F J, Li J, Zhao T, Hu Y, Zhang T Z, Fang L. COTTONOMICS: a comprehensive cotton multi- omics database. Database, 2022, 2022: baac080. |
[16] | Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X X, Wu J Y, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524-530. |
[17] |
Li Y Q, Si Z F, Wang G P, Shi Z L, Chen J W, Qi G A, Jin S K, Han Z G, Gao W H, Tian Y, et al. Genomic insights into the genetic basis of cotton breeding in China. Mol Plant, 2023, 16: 662-677.
doi: 10.1016/j.molp.2023.01.012 pmid: 36738104 |
[18] | Zhang Y Y, Zhou F W, Wang H, Chen Y N, Yin T M, Wu H T. Genome-wide comparative analysis of the fasciclin-like arabinogalactan proteins (FLAs) in salicacea and identification of secondary tissue development-related genes. Int J Mol Sci, 2023, 24: 1481. |
[19] | Cagnola J I, Dumont de Chassart G J, Ibarra S E, Chimenti C, Ricardi M M, Delzer B, Ghiglione H, Zhu T, Otegui M E, Estevez J M, et al. Reduced expression of selected FASCICLIN-LIKE ARABINOGALACTAN PROTEIN genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds. Plant Cell Environ, 2018, 41: 661-674. |
[20] | Feraru E, Feraru M I, Moulinier-Anzola J, Schwihla M, Ferreira Da Silva Santos J, Sun L, Waidmann S, Korbei B, Kleine-Vehn J. PILS proteins provide a homeostatic feedback on auxin signaling output. Development, 2022, 149: dev200929. |
[1] | 薛晓菲, 戴云静, 李熙林, 丁艳艳, 王翔, 雷长英, 韩焕勇, 贺道华. 陆地棉杜松烯合酶基因GhCDN10的特征及其在棉酚合成中功能分析[J]. 作物学报, 2025, 51(8): 2060-2076. |
[2] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
[3] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
[4] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
[5] | 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444. |
[6] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
[7] | 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408. |
[8] | 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188. |
[9] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
[10] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
[11] | 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556. |
[12] | 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102. |
[13] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[14] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[15] | 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502. |
|