欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2139-2151.doi: 10.3724/SP.J.1006.2025.55015

• 耕作栽培·生理生化 • 上一篇    下一篇

秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响

樊友众1,王先领1,王宗铠1,王春云1,王天尧2,谢捷3,蒯婕1,汪波1,王晶1,徐正华1,赵杰1,周广生1,4,*   

  1. 1 华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070; 2 荆州市农业科学院,湖北荆州 434007; 3 襄阳市农业科学院,湖北襄阳 441022; 4 湖北洪山实验室,湖北武汉 430070
  • 收稿日期:2025-03-03 修回日期:2025-04-25 接受日期:2025-04-25 出版日期:2025-08-12 网络出版日期:2025-05-23
  • 基金资助:
    本研究由国家重点研发计划项目(2021YFD1901205)资助。

Effects of straw incorporation combined with nitrogen management on photosynthetic efficiency and yield of rapeseed following rice

FAN You-Zhong1,WANG Xian-Ling1,WANG Zong-Kai1,WANG Chun-Yun1,WANG Tian-Yao2,XIE Jie3,KUAI Jie1,WANG Bo1,WANG Jing1,XU Zheng-Hua1,ZHAO Jie1,ZHOU Guang-Sheng1,4,*   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China; 2 Jingzhou Academy of Agricultural Sciences, Jingzhou 434007, Hubei, China; 3 Xiangyang Academy of Agricultural Sciences, Xiangyang 441002, Hubei, China; 4 Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2025-03-03 Revised:2025-04-25 Accepted:2025-04-25 Published:2025-08-12 Published online:2025-05-23
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2021YFD1901205).

摘要: 稻油两熟是长江流域冬油菜生产的主要种植制度,明确秸秆还田下油菜氮肥运筹方案对油菜丰产增效和绿色发展具有重要意义。基于连续4年的稻-油两熟定位试验,系统研究秸秆全量还田耦合不同氮肥运筹方式对高密度直播油菜产量、生物量及光合特性的影响。试验采用裂区设计,主区为秸秆利用方式(R0:不还田;R1:全量还田);副区为氮肥运筹,设置240 kg hm2的常规施氮量(CK:基肥:苗肥:薹肥:花肥=6:4:0:0)和减氮20% (N1:基肥∶苗肥∶薹肥∶花肥=10∶0∶0∶0;N2:基肥∶苗肥∶薹肥∶花肥=6∶4∶0∶0;N3:基肥∶苗肥∶薹肥∶花肥= 6∶2∶2∶0;N4: 基肥∶苗肥∶薹肥∶花肥= 6∶2∶0∶2)处理,共5个水平。结果表明,R1使油菜显著增产6.7%,主要归因于单株角果数和单株产量的显著增加;R0处理下氮肥减施使油菜减产2.1%~23.4%,N3处理减产幅度最小,N3产量与CK比无显著差异,主要归因于氮肥合理运筹显著增加了成株率和单株产量。相比R0,苗期R1使地上部干物质显著降低26.9%,主要原因为秸秆腐解与幼苗争氮;成熟期则显著增加10.3%。在苗期和薹期,减氮20%光合器官面积显著低于CK;而在花期,N3处理下的光合器官面积与CK相当,显著高于其他氮肥运筹方式,支撑群体获得最大截光率和光能利用率,特别是在R1条件下。在花期,R1使叶片Rubisco酶活性显著增加3.5%~20.9%,光合速率增加;蔗糖合成酶(SS-I,分解方向)、蔗糖磷酸合成酶(SPS)活性提高,光合产物蔗糖转化率增加,促进碳水化合物的积累和转运,为成熟期产量增加奠定基础。而合理的氮肥运筹措施可以进一步增加产量。在N3处理下,油菜花期叶片Rubisco活性提高5.8%~12.4%,且SS-I和SPS酶活性同步提高;另外,净光合速率和群体光能利用率的增加促进了花期干物质积累,从而进一步提高产量。因此,在长江流域水稻秸秆全量还田油菜高密种植下,以全生育期施氮192 kg hm2 (基肥:苗肥:薹肥=6:2:2)为推荐施肥方案,可实现增产减氮增效协同目标。

关键词: 油菜, 秸秆还田, 氮肥运筹, 产量, 光合作用

Abstract:

Rice–rapeseed rotation is the predominant cropping system for winter rapeseed production in the Yangtze River Basin. Optimizing nitrogen (N) management under straw incorporation is critical for enhancing rapeseed yield, improving nitrogen use efficiency (NUE), and supporting sustainable agricultural development. This study was based on a four-year field experiment within a rice–rapeseed rotation system, evaluating the impact of straw incorporation combined with different nitrogen management strategies. The objective was to assess their effects on yield, biomass accumulation, and photosynthetic performance in high-density, direct-seeded rapeseed. A split-plot design was employed, with straw management as the main factor (R0: no straw return; R1: full straw return) and nitrogen fertilization strategy as the sub-factor. Five nitrogen treatments were applied: a conventional rate of 240 kg N hm?2 (CK, basal∶ seedling∶ bolting∶ flowering = 6∶4∶0∶0) and a 20% nitrogen reduction (192 kg N hm?2) under four application regimes (N1: 10∶0∶0∶0; N2: 6∶4∶0∶0; N3: 6∶2∶2∶0; N4: 6∶2∶0∶2). Full straw return (R1) significantly increased rapeseed yield by 6.7%, primarily due to higher silique number and seed yield per plant. Under R0, nitrogen reduction led to yield losses ranging from 2.1% to 23.4%, with the N3 treatment showing the smallest decline. Yields under N3 were statistically comparable to CK, attributed to improved plant survival and seed yield per plant from optimized N allocation. Although R1 reduced aboveground dry matter by 26.9% at the seedling stage—likely due to nitrogen competition between decomposing straw and young plants—biomass accumulation increased by 10.3% at maturity. At the seedling and bolting stages, the 20% N reduction significantly decreased leaf area compared to CK. However, during flowering, the N3 treatment maintained a leaf area similar to CK, and significantly higher than other reduced-N treatments, resulting in enhanced light interception and radiation use efficiency (RUE), particularly under R1. At flowering, R1 significantly increased Rubisco activity by 3.5%–20.9%, enhancing photosynthetic capacity. The activities of sucrose synthase (SS-I, in the degradation direction) and sucrose phosphate synthase (SPS) were also elevated, promoting sucrose conversion, carbohydrate accumulation, and translocation, thereby contributing to final yield formation. Under N3, Rubisco activity increased by 5.8%–12.4%, accompanied by increased SS-I and SPS activities. These physiological improvements led to higher net photosynthetic rates and RUE during flowering, supporting greater dry matter accumulation and yield. For high-density rapeseed cultivation with full straw incorporation in the Yangtze River Basin, the optimal nitrogen strategy is 192 kg N hm?2 applied as 6∶2∶2 (basal∶ seedling∶ bolting). This fertilization regime effectively balances yield maximization with nitrogen reduction, achieving both high productivity and sustainable nitrogen management.

Key words: rapeseed, straw incorporation, nitrogen management, yield, photosynthesis

[1] Hu Q, Hua W, Yin Y, Zhang X K, Liu L J, Shi J Q, Zhao Y G, Qin L, Chen C, Wang H Z. Rapeseed research and production in China. Crop J, 2017, 5: 127–135.

[2] Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97–105.

[3] 刘芳, 张长生, 陈爱武, 周广生, 吴江生. 秸秆还田技术研究及应用进展. 作物杂志, 2012, (2): 18–23.

Liu F, Zhang C S, Chen A W, Zhou G S, Wu J S. Technology research and application prospect of straw returning. Crops, 2012, (2): 18–23 (in Chinese with English abstract).

[4] 戴志刚, 鲁剑巍, 李小坤, 鲁明星, 杨文兵, 高祥照. 不同作物还田秸秆的养分释放特征试验. 农业工程学报, 2010, 26(6): 272–276.

Dai Z G, Lu J W, Li X K, Lu M X, Yang W B, Gao X Z. Nutrient release characteristic of different crop straws manure. Trans CSAE, 2010, 26(6): 272–276 (in Chinese with English abstract).

[5] Wang C Y, Wang Z K, Liu M Z, Batool M, El-Badri A M, Wang X L, Lou H X, Shao D L, Tan X Q, Li Z, et al. Optimizing tillage regimes in rice-rapeseed rotation system to enhance crop yield and environmental sustainability. Field Crops Res, 2024, 318: 109614.

[6] Bouchet A S, Laperche A, Bissuel-Belaygue C, Snowdon R, Nesi N, Stahl A. Nitrogen use efficiency in rapeseed: a review. Agron Sustain Dev, 2016, 36: 38.

[7] Kuai J, Sun Y Y, Zhou M, Zhang P P, Zuo Q S, Wu J S, Zhou G S. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199: 89–98.

[8] Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecosyst Environ, 2006, 117: 80–108.

[9] Chen X J, Strokal M, Kroeze C, Supit I, Wang M R, Ma L, Chen X P, Shi X J. Modeling the contribution of crops to nitrogen pollution in the Yangtze River. Environ Sci Technol, 2020, 54: 11929–11939.

[10] Malhi S S, Lemke R, Wang Z H, Chhabra B S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res, 2006, 90: 171–183.

[11] 陈培峰, 董明辉, 顾俊荣, 惠锋, 乔中英, 杨代凤, 刘腾飞. 麦秸还田与氮肥运筹对超级稻强弱势粒粒重与品质的影响. 中国水稻科学, 2012, 26: 715–722.

Chen P F, Dong M H, Gu J R, Hui F, Qiao Z Y, Yang D F, Liu T F. Effects of returning wheat-residue to field and nitrogen management on grain weight and quality of superior and inferior grains in super rice. Chin J Rice Sci, 2012, 26: 715–722 (in Chinese with English abstract).

[12] 胡雅杰, 朱大伟, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 改进施氮运筹对水稻产量和氮素吸收利用的影响. 植物营养与肥料学报, 2015, 21: 12–22.

Hu Y J, Zhu D W, Xing Z P, Gong J L, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Modifying nitrogen fertilization ratio to increase the yield and nitrogen uptake of super Japonica rice. J Plant Nutr Fert, 2015, 21: 12–22 (in Chinese with English abstract).

[13] 彭志芸, 丁峰, 谌洁, 向开宏, 马鹏, 郭长春, 马均. 麦油稻轮作秸秆还田与施氮对水稻光合特性及产量的影响. 湖南农业大学学报(自然科学版), 2020, 46(3): 253–261.

Peng Z Y, Ding F, Chen J, Xiang K H, Ma P, Guo C C, Ma J. Effects of straw mulching and nitrogen management on photosynthetic characteristics and yield of direct seeding rice under wheat rape rice rotation. J Hunan Agric Univ (Nat Sci), 2020, 46(3): 253–261 (in Chinese with English abstract).

[14] 张刚, 王德建, 俞元春, 王灿, 庄锦贵. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响. 植物营养与肥料学报, 2016, 22: 877–885.

Zhang G, Wang D J, Yu Y C, Wang C, Zhuang J G. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss. J Plant Nutr Fert, 2016, 22: 877–885 (in Chinese with English abstract).

[15] 张维乐, 戴志刚, 任涛, 周先竹, 王忠良, 李小坤, 丛日环. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响. 中国农业科学, 2016, 49: 1254–1266.

Zhang W L, Dai Z G, Ren T, Zhou X Z, Wang Z L, Li X K, Cong R H. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems. Sci Agric Sin, 2016, 49: 1254–1266 (in Chinese with English abstract).

[16] 李录久, 王家嘉, 吴萍萍, 黄厚宽, 蒋荫锡. 秸秆还田下氮肥运筹对白土田水稻产量和氮吸收利用的影响. 植物营养与肥料学报, 2016, 22: 254–262.
Li L J, Wang J J, Wu P P, Huang H K, Jiang Y X. Effect of different nitrogen application on rice yield and N uptake of white soil under wheat straw turnover. J Plant Nutr Fert, 2016, 22: 254–262 (in Chinese with English abstract).

[17] 陈仕高, 李克阳, 田文华, 杨洪松. 水稻秸秆还田替代化肥对油菜产量及耕地质量的影响. 南方农业, 2019, 13(增刊1): 73–75.

Chen S G, Li K Y, Tian W H, Yang H S. Effects of returning rice straw to the field instead of fertilizer on rape yield and cultivated land quality. South China Agric, 2019, 13(S1): 73–75 (in Chinese).

[18] 王天尧, 何庆虎, 周祖清, 赵永刚, 刘署艳. -轮作秸秆还田及耕作模式对油菜产量的影响. 农业科技通讯, 2019, (9): 120–122.

Wang T Y, He Q H, Zhou Z Q, Zhao Y G, Liu S Y. Effect of “rice-oil” rotation straw returning to field and cultivation mode on rape yield. Bull Agric Sci Technol, 2019, (9): 120–122 (in Chinese).

[19] 王艳, 王建文, 宋宇宁, 闫美瑛, 童传洪. 水稻茬轮作油菜化肥减量施用对产量和效益的影响. 中南农业科技, 2023, 44(5): 246–247.

Wang Y, Wang J W, Song Y N, Yan M Y, Tong C H. Effect of reduced application of chemical fertilizer on yield and benefit of rapeseed in rice stubble rotation. South-Central Agric Sci Technol, 2023, 44(5): 246–247 (in Chinese).

[20] 张勇健. 水稻秸秆还田下化肥减量对油菜产量及效益的影响. 福建稻麦科技, 2020, 38(3): 30–32.

Zhang Y J. Effect of chemical fertilizer reduction on rape yielding and benefit under rice straw returning. Fujian Sci Technol Rice Wheat, 2020, 38(3): 30–32 (in Chinese with English abstract).

[21] Nelson M N, Nesi N, Barrero J M, Fletcher A L, Greaves I K, Hughes T, Laperche A, Snowdon R, Rebetzke G J, Kirkegaard J A. Strategies to improve field establishment of canola: a review. Adv Agron, 2022, 175: 133–177.

[22] Subrahmaniyan K, Veeramani P, Harisudan C. Heat accumulation and soil properties as affected by transparent plastic mulch in Blackgram (Vigna mungo) doubled cropped with Groundnut (Arachis hypogaea) in sequence under rainfed conditions in Tamil Nadu, India. Field Crops Res, 2018, 219: 43–54.

[23] 王先领, 姜岳, 雷贻忠肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, . 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响. 作物学报202450: 12711286.

Wang X L, Jiang Y, Lei Y Z, Xiao S N, She H J, Duan S X, Huang M, Kuai J, Wang B, Wang J, et al. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield. Acta Agron Sin, 202450: 12711286 (in Chinese with English abstract).

[24] 袁嫚嫚, 邬刚, 胡润, 孙义祥. 秸秆还田配施化肥对稻油轮作土壤有机碳组分及产量影响. 植物营养与肥料学报, 2017, 23: 27–35.

Yuan M M, Wu G, Hu R, Sun Y X. Effects of straw returning plus fertilization on soil organic carbon components and crop yields in rice-rapeseed rotation system. J Plant Nutr Fert, 2017, 23: 27–35 (in Chinese with English abstract).

[25] 周雄, 朱丹丹, 王少华, 邵文胜, 张文君. 秸秆还田方式对油菜生长及养分吸收的影响. 中国农技推广, 2019, 35(增刊1): 29–31.

Zhou X, Zhu D D, Wang S H, Shao W S, Zhang W J. Effects of straw returning methods on rapeseed growth and nutrient absorption. China Agric Technol Extens, 2019, 35(S1): 29–31 (in Chinese with English abstract).

[26] Zuo Q S, Kuai J, Zhao L, Hu Z, Wu J S, Zhou G S. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Res, 2017, 203: 47–54.

[27] Xie Y R, Zhang X L, Gao Y, Li J Q, Geng Y Q, Guo L Y, Shao X W, Ran C. Effects of different straw returning periods and nitrogen fertilizer combinations on rice roots and yield in saline-sodic soil. Agronomy, 2024, 14: 2463.

[28] 韩自行, 张长生, 王积军, 张冬晓, 汤松, 陈爱武, 周广生, 胡立勇, 吴江生, 傅廷栋. 氮肥运筹对稻茬免耕油菜农艺性状及产量的影响. 作物学报, 2011, 37: 2261–2268.

Han Z H, Zhang C S, Wang J J, Zhang D X, Tang S, Chen A W, Zhou G S, Hu L Y, Wu J S, Fu T D. Effects of nitrogen application on agronomic traits and yield of rapeseed in no-tillage rice stubble field. Acta Agron Sin, 2011, 37: 2261–2268 (in Chinese with English abstract).

[29] 苏伟, 鲁剑巍, 李云春, 李小坤, 马常宝, 高祥照. 氮肥运筹方式对油菜产量、氮肥利用率及氮素淋失的影响. 中国油料作物学报, 2010, 32: 558–562.

Su W, Lu J W, Li Y C, Li X K, Ma C B, Gao X Z. Effect of nitrogen management mode on yield, nitrogen using efficiency and nitrogen leaching of rapeseed. Chin J Oil Crop Sci, 2010, 32: 558–562 (in Chinese with English abstract).

[30] 左青松, 杨海燕, 冷锁虎, 曹石, 曾讲学, 吴江生, 周广生. 施氮量对油菜氮素积累和运转及氮素利用率的影响. 作物学报, 2014, 40: 511–518.

Zuo Q S, Yang H Y, Leng S H, Cao S, Zeng J X, Wu J S, Zhou G S. Effects of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen use efficiency in rapeseed (Brassica napus L.). Acta Agron Sin, 2014, 40: 511–518 (in Chinese with English abstract).

[31] Ma B L, Herath A W. Timing and rates of nitrogen fertilizer application on seed yield, quality and nitrogen-use efficiency of canola. Crop Past Sci, 2016, 67: 167.

[32] Justes E, Denoroy P, Gabrielle B, Gosse G. Effect of crop nitrogen status and temperature on the radiation use efficiency of winter oilseed rape. Eur J Agron, 2000, 13: 165–177.

[33] Song Z L, Xu G L, Feng Y H, Li J, Luo J L, Wang X K, Gao Y Q, You X X, Ren H J. Effects of annual straw incorporation combined with application of nitrogen fertilizer in rice season on dry matter and nutrient accumulation characteristics of subsequent rapeseed. Agronomy, 2023, 13: 1514.

[34] Liu T, Ren T, White P J, Cong R H, Lu J W. Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape. J Exp Bot, 2018, 69: 2995–3007.

[35] Norton R M. Nitrogen management to optimise canola production in Australia. Crop Past Sci, 2016, 67: 419.

[36] Hilton J R, Thomas B. Photoregulation of phytochrome synthesis in germinating embryos of Avena sativa L. J Exp Bot, 1987, 38: 1704–1712.

[37] Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant, 2010, 3: 942–955.

[1] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[2] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[3] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[4] 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110.
[5] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[6] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[7] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[8] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[9] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[10] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[11] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[12] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[13] 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434.
[14] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
[15] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[10] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .