欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1703-1711.doi: 10.3724/SP.J.1006.2025.55017

• 综述 •    下一篇

中国花生高产栽培研究进展与展望

万书波*,张佳蕾,高华鑫,王才斌   

  1. 山东省农业科学院, 山东济南 250100
  • 收稿日期:2025-02-25 修回日期:2025-05-07 接受日期:2025-05-07 出版日期:2025-07-12 网络出版日期:2025-05-13
  • 基金资助:
    本研究由国家重点研发计划项目(2024YFD2301000), 山东省重点研发计划项目(ZFJH202310, 2024CXGC010902), 财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13)和泰山学者工程项目(tsqn202211275, tspd20221107)资助。

Advances and prospects of high-yield peanut cultivation in China

WAN Shu-Bo*,ZHANG Jia-Lei,GAO Hua-Xin,WANG Cai-Bin   

  1. Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2025-02-25 Revised:2025-05-07 Accepted:2025-05-07 Published:2025-07-12 Published online:2025-05-13
  • Supported by:
    This study was supported by the National Key Research and Development Program (2024YFD2301000), the Key Research and Development Program of Shandong Province (ZFJH202310, 2024CXGC010902), the China Agriculture Research System of MOF and MARA (CARS-13), and the Taishan Scholar Program (tsqn202211275, tspd20221107).

摘要:

我国人多地少,持续提高花生产量是花生栽培首要目标。建国以来,我国花生高产栽培技术研究与应用取得了长足的进步,形成了独具中国特色的花生高产栽培技术体系,带动了花生整体生产水平的不断提高。回顾和总结我国花生高产栽培历程和经验,分析和探讨花生持续增产潜力与途径,有助于进一步提升我国花生高产栽培研究创新能力和整体生产水平20世纪70年代初期,通过应用增产效果显著的氮磷化肥施用技术,产量突破了6000 kg hm-270年代末,通过化学调控、地膜覆盖、氮磷钾平衡施肥等关键技术,产量突破了7500 kg hm-2;进入20世纪90年代后,通过缓控徒长、量化施肥等关键技术,产量突破了9000 kg hm-2;进入新千年后,通过单粒精播等关键技术,产量突破了11,250 kg hm-22023年,以单粒精播技术为核心,配套全程可控施肥、三防三促群体调控和微生物耦合技术等,构建高产栽培技术体系创造实打验收12,982 kg hm-2的全国高产纪录。据推算花生实际生产能力还有较大的提升空间,培育高潜力品种、充分挖掘土壤生产潜能和构建高质量的群体是未来进一步提高花生产量的主要途径。

关键词: 花生, 高产, 栽培, 研究进展, 展望

Abstract:

Continuously increasing peanut yield remains a key priority for crop cultivation in China, given the national context of a large population and limited arable land. Since the founding of the People's Republic of China, significant advancements have been made in the research and application of high-yield cultivation technologies for peanut, laying the foundation for a distinctive Chinese system of high-yield peanut cultivation and substantially improving national production levels. In this report, we review and summarize the historical development and practical experience of peanut high-yield cultivation in China, analyze its potential for further yield improvement, and discuss possible strategies to enhance both research innovation and overall production capacity. In the early 1970s, peanut yields surpassed 6000 kg hm-2 through the application of nitrogen and phosphorus fertilization, which had a notable impact on yield. By the late 1970s, yields reached 7500 kg hm-2 with the adoption of key practices such as chemical regulation, plastic film mulching, and balanced fertilization with nitrogen, phosphorus, and potassium. During the 1990s, yields exceeded 9000 kg hm-2 through technologies aimed at controlling excessive vegetative growth and implementing quantified fertilization. In the early 2000s, the introduction of single-seed precision sowing further boosted yields to a peak of 11,250 kg hm-2. Most recently, in 2023, a national record yield of 12,982 kg hm-2 was achieved by implementing an integrated high-yield cultivation system, which focused on single-seed precision sowing and supported by whole-process controlled fertilization, the “three preventions and three promotions” group regulation strategy, and microbial synergistic technologies. Despite these achievements, it is estimated that there remains considerable potential for promoting actual peanut production, and the development of high-yielding varieties, full exploitation of soil productivity, and the construction of high-quality plant populations are expected to be the primary pathways for further yield improvement.

Key words: peanut, high-yield, cultivation, research progress, prospect

[1] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific & Technical Publishers, 2003 (in Chinese).

[2] 万书波, 单世华, 郭峰. 提高花生产能,确保油料供给安全. 中国农业科技导报, 2010, 12(3): 2226.
Wan S B, Shan S H, Guo F. Improving peanut production capacity to ensure oil supply. J Agric Sci Technol, 2010, 12(3): 2226 (in Chinese with English abstract).

[3山东省花生研究所栽培组. 花生高产栽培技术的研究. 花生科技, 1976, 5(2): 20–30.
Cultivation Group of Shandong Peanut Research Institute. Research on high-yield peanut cultivation technology. J Peanut Sci, 1976, 5(2): 20–30 (in Chinese).

[4山东省招远县小李家大队党支部. 新整大寨田 花生当年创高产. 花生科技, 1976, 5(4): 19–20.
The Party Branch of Xiaolijia Brigade in Zhaoyuan county, Shandong province. Peanut in Xinzhengdazhaitian achieved high yield that year. J Peanut Sci, 1976, 5(4): 19–20 (in Chinese).

[5山东省蓬莱县南王公社团结大队科研队. 花生八百斤高产的栽培技术总结. 花生科技, 1977, 6(1): 20–23.
The Scientific Research Team of Unity Brigade, Nanwang Commune, Penglai County, Shandong Province. Summary of cultivation techniques for peanut with 800 Jin high yield. J Peanut Sci, 1977, 6(1): 20–23 (in Chinese).

[6孙彦浩. 花生栽培研究与生产发展回顾与展望—. 中国油料, 1994, 16(3): 78–82.
Sun Y H. Research and production development of peanut cultivation-review and prospect. Chin J Oil Crop Sci, 1994, 16(3): 78–82 (in Chinese).

[7孙彦浩, 隋清卫, 李纪恩, 宋俊峰, 张吉民, 万书波. 花生千斤高产栽培技术及其规律的研究. 花生科技, 1984, 13(1): 1–6.
Sun Y H, Sui Q W, Li J E, Song J F, Zhang J M, Wan S B. Study on high-yield cultivation techniques and their laws of Arachis hypogaea. J Peanut Sci, 1984, 13(1): 1–6 (in Chinese).

[8山东省花生研究所栽培组, 沈阳化工研究院农药三室. 花生喷植物生长调节剂B9试验简结. 花生科技, 1977, 6(2): 28–34.
The Cultivation Group of Shandong Peanut Research Institute, Pesticide Room 3 of Shenyang Research Institute of Chemical Industry. Brief summary of the experiment that spraying plant growth regulator B9 on peanut. J Peanut Sci, 1977, 6(2): 28–34 (in Chinese).

[9] 王玉芝, 许贵民, 王郁兰. 地膜覆盖栽培花生增产效果的研究. 吉林农业大学学报, 1981, 3(2): 27–31.
Wang Y Z, Xu G M, Wang Y L. Study on the effect of increasing yield of peanut cultivated with plastic film mulching. J Jilin Agric Univ, 1981, 3(2): 27–31 (in Chinese).

[10] 孙彦浩, 隋清卫, 李纪恩. 花生地膜覆盖栽培的研究. 山东农业科学, 1982, 14(1): 34–39.
Sun Y H, Sui Q W, Li J E. Research on the film mulching cultivation of peanut. Shandong Agric Sci, 1982, 14(1): 34–39 (in Chinese).

[11] 毛兴文, 孙彦浩. 花生高产栽培技术. 济南: 山东科学技术出版社, 1997.
Mao X W, Sun Y H. High-yield Cultivation Techniques of Peanut. Jinan: Shandong Science & Technology Press, 1997 (in Chinese).

[12] 于天一, 林建材, 冯昊, 吴正锋, 孙学武, 郑永美, 沈浦, 王才斌. 山东省花生高产栽培技术要点. 中国农技推广, 2016, 32(12): 33–34.
Yu T Y, Lin J C, Feng H, Wu Z F, Sun X W, Zheng Y M, Shen P, Wang C B. Key points of peanut high-yield cultivation techniques in Shandong Province. China Agric Technol Ext, 2016, 32(12): 33–34 (in Chinese).

[13] 王才斌. 花生增产增效新技术及实现机械化收获的建议. 中国油料作物学报, 2012, 34: 678–680.
Wang C B. New technologies for increasing yield and suggestions to simplify the process of mechanized-harvest in peanut. Chin J Oil Crop Sci, 2012, 34: 678–680 (in Chinese with English abstract).

[14] 王才斌, 成波, 张礼风, 朱建华, 刘道忠, 王华松, 宇仁娥, 宫崇宝, 姚广献. 花生优化施肥计算机决策系统开发与应用研究. 山东农业科学, 2000, 32(5): 34–35.
Wang C B, Cheng B, Zhang L F, Zhu J H, Liu D Z, Wang H S, Yu R E, Gong C B, Yao G X. Development and application of computer decision system for balance fertilizer application in peanut. Shandong Agric Sci, 2000, 32(5): 34–35 (in Chinese).

[15] 张佳蕾, 郭峰, 李新国, 杨佃卿, 王兴语, 陶寿祥, 万书波. 花生单粒精播单产11250 kg/hm2高产栽培技术. 花生学报, 2014, 43(4): 46–49.
Zhang J L, Guo F, Li X G, Yang D Q, Wang X Y, Tao S X, Wan S B. New breakthrough of Chinese peanut cultivation techniques 11250 kg/hm2 under single-seed sowing pattern. J Peanut Sci, 2014, 43(4): 46–49 (in Chinese with English abstract).

[16] 张佳蕾, 张雷, 林英杰, 刘颖, 王建国, 郭峰, 唐朝辉, 李新国, 万书波. 单粒精播对花生生物学特性的影响. 中国油料作物学报, 2020, 42: 960–969.
Zhang J L, Zhang L, Lin Y J, Liu Y, Wang J G, Guo F, Tang Z H, Li X G, Wan S B. Effects of single seed sowing on biological characteristics of peanut. Chin J Oil Crop Sci, 2020, 42: 960–969 (in Chinese with English abstract).

[17] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757–3766.
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B. Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015, 48: 3757–3766 (in Chinese with English abstract).

[18] 张佳蕾, 郭峰, 苗昊翠, 李利民, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 单粒精播对高产花生株间竞争缓解效应研究. 花生学报, 2018, 47(2): 52–58.
Zhang J L, Guo F, Miao H C, Li L M, Yang S, Geng Y, Meng J J, Li X G, Wan S B. Study on relieving inter-plant competition by single seed sowing of high yield peanut. J Peanut Sci, 2018, 47(2): 52–58 (in Chinese with English abstract).

[19] 万书波, 张佳蕾, 张智猛. 花生种植技术的重大变革——单粒精播. 中国油料作物学报, 2020, 42: 927933.
Wan S B, Zhang J L, Zhang Z M. Great change of peanut planting technology: single seed sowing. Chin J Oil Crop Sci, 2020, 42: 927933 (in Chinese with English abstract).

[20] 梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26: 3700–3706.
Liang X Y, Guo F, Zhang J L, Meng J J, Li L, Wan S B, Li X G. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca). Chin J Appl Ecol, 2015, 26: 3700–3706 (in Chinese with English abstract).

[21] 刘俊华, 杨吉顺, 吴正锋, 郑永美, 杨丽玉, 张佳蕾, 王建国, 赵玉成, 解晓梅, 王黎. 单粒精播对花生干物质累积及根冠结构的影响. 中国油料作物学报, 2024, 46: 113121.
Liu J H, Yang J S, Wu Z F, Zheng Y M, Yang L Y, Zhang J L, Wang J G, Zhao Y C, Xie X M, Wang L. Effects of single-seed sowing on dry matter accumulation and root, canopy structure of peanut. Chin J Oil Crop Sci, 2024, 46: 113121 (in Chinese with English abstract).

[22] 万书波, 张佳蕾. 花生单粒精播高产栽培理论与技术. 北京: 科学出版社, 2020.
Wan S B, Zhang J L. Theory and Technology of Peanut High-yield Cultivation with Single-seed Precision Sowing. Beijing: Science Press, 2020 (in Chinese).

[23] Zhang J L, Geng Y, Guo F, Li X G, Wan S B. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. J Integr Agric, 2020, 19: 1919–1927.

[24] 王建国, 耿耘, 杨佃卿, 郭峰, 杨莎, 李新国, 唐朝辉, 张佳蕾, 万书波. 单粒精播对中、高产旱地花生群体质量及养分利用的影响. 作物学报, 2022, 48: 2866–2878.
Wang J G, Geng Y, Yang D Q, Guo F, Yang S, Li X G, Tang Z H, Zhang J L, Wan S B. Effects of single seed precision sowing on population quality, nutrient utilization of peanut in medium and high yield drylands. Acta Agron Sin, 2022, 48: 2866–2878 (in Chinese with English abstract).

[25] 梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 适宜密度单粒精播提高花生碳氮代谢酶活性及荚果产量与籽仁品质. 中国油料作物学报, 2016, 38: 336–343.
Liang X Y, Guo F, Zhang J L, Meng J J, Li L, Wan S B, Li X G. Effects of single-seed sowing density on characteristics related to yield and quality of peanut (Arachis hypogaca L.). Chin J Oil Crop Sci, 2016, 38: 336–343 (in Chinese with English abstract).

[26] 梁晓艳, 郭峰, 张佳蕾, 李林, 孟静静, 李新国, 万书波. 不同密度单粒精播对花生养分吸收及分配的影响. 中国生态农业学报, 2016, 24: 893–901.
Liang X Y, Guo F, Zhang J L, Li L, Meng J J, Li X G, Wan S B. Effects of single-seed sowing at different densities on nutrient uptake and distribution in peanut. Chin J Eco-Agric, 2016, 24: 893–901 (in Chinese with English abstract).

[27] 张佳蕾, 郭峰, 李新国, 杨莎, 耿耘, 孟静静, 张凤, 万书波. 提早化控对高产花生节间分布和产量构成的影响. 花生学报, 2017, 46(4): 6367.
Zhang J L, Guo F, Li X G, Yang S, Geng Y, Meng J J, Zhang F, Wan S B. Effects of earlier chemical control on internode distribution and yield components of high yield peanut. J Peanut Sci, 2017, 46(4): 6367 (in Chinese with English abstract).

[28] 张佳蕾, 郭峰, 张凤, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 提早化控对高产花生个体发育和群体结构影响. 核农学报, 2018, 32: 22162224.
Zhang J L, Guo F, Zhang F, Yang S, Geng Y, Meng J J, Li X G, Wan S B. Effects of earlier chemical control on ontogeny and population structure of high yield peanut. J Nucl Agric Sci, 2018, 32: 22162224 (in Chinese with English abstract).

[29] 张佳蕾, 郭峰, 李德文, 杨莎, 耿耘, 孟静静, 李新国, 万书波. “三防三促调控技术对高产花生农艺性状和产量的影响. 中国油料作物学报, 2018, 40: 828–834.
Zhang J L, Guo F, Li D W, Yang S, Geng Y, Meng J J, Li X G, Wan S B. Effects of three prevention and three promotion regulation techniques on economical characteristics and yield of high yield peanut. Chin J Oil Crop Sci, 2018, 40: 828–834 (in Chinese with English abstract).

[30] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响. 作物学报, 2021, 47: 1666–1679.
Wang J G, Zhang J L, Guo F, Tang Z H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut. Acta Agron Sin, 2021, 47: 1666–1679 (in Chinese with English abstract).

[31] 尤召阳, 王建国, 刘颖, 闫振辉, 张佳蕾, 万书波. 氮钙互作对花生氮素利用及钙素积累的影响. 中国油料作物学报, 2024, 46: 904–912.
You Z Y, Wang J G, Liu Y, Yan Z H, Zhang J L, Wan S B. Interactive effect of N and Ca on the nitrogen metabolism enzyme activity, nitrogen utilization and calcium accumulation of peanut. Chin J Oil Crop Sci, 2024, 46: 904–912 (in Chinese with English abstract).

[32] 王建国, 尹金, 郭峰, 张佳蕾, 唐朝辉, 李新国, 万书波. 新型缓释掺混肥对花生产量和肥料利用的影响. 花生学报, 2020, 49(3): 64–67.
Wang J G, Yin J, Guo F, Zhang J L, Tang Z H, Li X G, Wan S B. Effects of new slow-release blended fertilizer on peanut yield and fertilizer utilization. J Peanut Sci, 2020, 49(3): 64–67 (in Chinese with English abstract).

[33] 王建国, 张佳蕾, 郭峰, 杨莎, 高华鑫, 张春艳, 赵红军, 李新国, 万书波. 花生专用缓释复混肥分层条施促进花生根系生长、产量形成及氮素利用. 植物营养与肥料学报, 2022, 28: 2274–2286.
Wang J G, Zhang J L, Guo F, Yang S, Gao H X, Zhang C Y, Zhao H J, Li X G, Wan S B. Band application of peanut-specific slow-release compound fertilizer at different soil depths promotes the root growth, yield performance and nitrogen utilization of peanut. J Plant Nutr Fert, 2022, 28: 2274–2286 (in Chinese with English abstract).

[34] 万书波. 农业供给侧结构性改革背景下花生生产的若干问题. 花生学报, 2017, 46(2): 6063.
Wan S B. Some problems of peanut production under the structural reform of agricultural supply side. J Peanut Sci, 2017, 46(2): 6063 (in Chinese with English abstract).

[35] 万书波. 以农机农艺融合和高产高效栽培技术创新推动花生产业高质量发展. 民主与科学, 2024, (5): 1214.
Wan S B. Promote the high-quality development of the peanut industry through the integration of agricultural machinery and agronomy, as well as innovations in high-yield and high-efficiency cultivation techniques. Democr Sci, 2024, (5): 1214 (in Chinese).

[36] 万书波, 张佳蕾. 中国花生产业降本增效新途径探讨. 中国油料作物学报, 2019, 41: 657662.
Wan S B, Zhang J L. Discussion on new ways to reduce cost and increase efficiency of peanut industry in China. Chin J Oil Crop Sci, 2019, 41: 657662 (in Chinese with English abstract).

[37] 山东省花生研究所. 花生栽培生理. 上海: 上海科学技术出版社, 1990.
Shandong Peanut Research Institute. Peanut Cultivation Physiology. Shanghai: Shanghai Scientific & Technical Publishers, 1990 (in Chinese).

[38] 孙中瑞. 花生高产潜力估算. 花生科技, 1981, 10(1): 1–4.
Sun Z R. Estimation of high yield potential of peanut. J Peanut Sci, 1981, 10(1): 1–4 (in Chinese).

[39] 郑亚萍, 田云云, 沙继锋, 张美英. 花生生产潜力与高产途径. 花生学报, 2002, 31(1): 26–29.
Zheng Y P, Tian Y Y, Sha J F, Zhang M Y. Yield potential and high-yielding channels of peanut. J Peanut Sci, 2002, 31(1): 26–29 (in Chinese with English abstract).

[40] 李国卫, 秦圣豪, 刘译阳, 张佳蕾, 韩燕, 万书波. 花生株型相关性状研究进展. 中国油料作物学报, 2020, 42: 934939.
Li G W, Qin S H, Liu Y Y, Zhang J L, Han Y, Wan S B. Advances in plant architecture studies of peanut. Chin J Oil Crop Sci, 2020, 42: 934939 (in Chinese with English abstract).

[41] 王才斌, 郑亚萍, 成波, 孙彦浩. 高产花生冠层光截获和光合、呼吸特性研究. 作物学报, 2004, 30: 274–278.
Wang C B, Zheng Y P, Cheng B, Sun Y H. Study on light interception, photosynthesis and respiration in high-yielding peanut canopies. Acta Agron Sin, 2004, 30: 274–278 (in Chinese with English abstract).

[1] 郭腾达, 崔梦杰, 陈琳杰, 韩锁义, 郭敬坤, 吴晨迪, 付留洋, 黄冰艳, 董文召, 张新友. 花生磷脂酰肌醇转运蛋白基因AhSFH的克隆及其响应黄曲霉菌侵染的表达特征分析[J]. 作物学报, 2025, 51(6): 1489-1500.
[2] 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276.
[3] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[4] 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981.
[5] 迟晓元, 毕竞男, 赵健鑫, 陈娜, 潘丽娟, 姜骁, 殷祥贞, 赵旭红, 马俊卿, 许静. 花生荚果力学特性评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(4): 943-957.
[6] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[7] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-895.
[8] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[9] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[10] 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333.
[11] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[12] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[13] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[14] 郭春林, 林满红, 陈婷, 陈鸿飞, 林文芳, 林文雄. 根际微生物响应再生稻衰老的演变特征及其延效机制[J]. 作物学报, 2024, 50(8): 2039-2052.
[15] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .