欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2033-2047.doi: 10.3724/SP.J.1006.2025.51023

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选

鲁向前1(), 付玉洁1, 赵俊恒1, 郑楠楠1, 孙楠楠1, 张国平1,2, 叶玲珍1,2,*()   

  1. 1浙江大学中原研究院生物设计与育种中心, 河南郑州 450000
    2浙江大学作物科学研究所, 浙江杭州 310058
  • 收稿日期:2025-03-03 接受日期:2025-06-01 出版日期:2025-08-12 网络出版日期:2025-06-10
  • 通讯作者: *叶玲珍, E-mail: yelingzhen@zju.edu.cn
  • 作者简介:E-mail: xiangqian_lu6@163.com
  • 基金资助:
    宁波市科技计划项目(2023S154);浙江省农业新品种选育重大科技专项(2021C02064-3)

Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture

LU Xiang-Qian1(), FU Yu-Jie1, ZHAO Jun-Heng1, ZHENG Nan-Nan1, SUN Nan-Nan1, ZHANG Guo-Ping1,2, YE Ling-Zhen1,2,*()   

  1. 1Center for Biological Design and Breeding, Zhongyuan Research Institute, Zhejiang University, Zhengzhou 450000, Henan, China
    2Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2025-03-03 Accepted:2025-06-01 Published:2025-08-12 Published online:2025-06-10
  • Contact: *E-mail: yelingzhen@zju.edu.cn
  • Supported by:
    Ningbo Science and Technology Plan Project(2023S154);Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding(2021C02064-3)

摘要: 依赖花药培养的单倍体育种是小麦品种高效选育的重要方法, 但花药培养效率品种间差异显著, 限制了该技术的广泛应用。目前已鉴定到石4185、H307和周麦16等高花药培养力的小麦品种(系), 但可用于规模化小麦育种的高花药培养力材料明显不足。本研究系统鉴定了全国94个温室生长的小麦品种的花药培养力相关性状。结果表明, 94个品种的花药最佳取样时期在幼穗顶部与叶耳距离为-5~2 cm, 其中-2 cm时取样最多, 且在温室和田间2种环境下生长的供试材料, 其花药最佳取样时期的穗部形态特征也有差异。94个温室生长的小麦品种花药培养愈伤组织诱导率、绿芽分化率、白芽分化率及绿苗产率的变幅分别为0~15%、0~100%、0~60%和0~22.95%, 愈伤诱导率与绿芽分化率、白芽分化率及绿苗产率均呈极显著正相关, 2种环境下生长的供试材料, 其花药培养愈伤诱导率表现一致。在94个品种中, 14个品种的绿苗产率超过1%, 其中6个品种达到高花药培养力标准, 且农艺性状优良, 可用于小麦单倍体创制与育种。本研究为小麦单倍体育种提供了实用技术与种质材料。

关键词: 小麦, 双单倍体, 花药培养, 高花药培养力, 育种应用

Abstract:

Haploid breeding based on anther culture is an important method for the efficient selection of wheat varieties. However, the efficiency of anther culture varies significantly among different wheat genotypes, which limits its broader application in wheat breeding. To date, a few wheat lines with high anther culture efficiency—such as Shi4185, H307, and Zhoumai16—have been identified. Nevertheless, there remains a lack of sufficient high-performing materials to support large-scale application of this technique. In this study, we systematically evaluated anther culture-related traits in 94 wheat varieties grown under greenhouse conditions. The optimal anther sampling stage for these varieties was determined to occur when the distance between the tip of the developing spike and the leaf auricle ranged from -5 cm to 2 cm, with the highest sampling frequency observed at -2 cm. Notably, spike morphological characteristics associated with the optimal sampling period differed between plants grown under greenhouse and field conditions. Among the 94 greenhouse-grown varieties, the callus induction rate, green shoot differentiation rate, albino shoot differentiation rate, and green plantlet production rate during anther culture ranged from 0-15%, 0-100%, 0-60%, and 0-22.95%, respectively. The callus induction rate showed highly significant positive correlations with the green shoot differentiation rate, albino shoot differentiation rate, and green plantlet production rate. Moreover, the callus induction rate exhibited consistent performance across both greenhouse and field conditions. Of the 94 varieties tested, fourteen exhibited green plantlet production rates exceeding 1%, and six varieties met the criteria for high anther culture efficiency while also demonstrating excellent agronomic traits. These varieties represent valuable germplasm resources for haploid breeding in wheat. This study provides practical techniques and genetic materials to support the advancement of wheat haploid breeding programs.

Key words: wheat, double haploid, anther culture, high anther culture ability, breeding application

附表1

94份温室生长小麦品种的花培力性状"

品种
Variety
愈伤诱导率
Callus induction rate
(%)
绿芽分化率
Green shoot
differentiation rate
(%)
绿苗产率
Green plantlet
production rate
(%)
白芽分化率
Albino shoot
differentiation rate
(%)
取样特征
Sampling
feature
(cm)
淮麦20 Huaimai 20 0 0 0 0 -1
宿0663 Su 0663 0 0 0 0 -2
阜936 Fu 936 0 0 0 0 -2
宿农6号 Sunong 6 0 0 0 0 -2
皖麦33 Wanmai 33 0.97 0 0 0 -3
皖麦52 Wanmai 52 1.15 0 0 0 -3
皖麦50 Wanmai 50 0 0 0 0 -3
皖麦29 Wanmai 29 0 0 0 0 -5
皖麦53 Wanmai 53 0 0 0 0 -2
石新828 Shixin 828 0 0 0 0 0
石家庄15 Shijiazhuang 15 3.33 20.00 1.33 60.00 -1
衡7228 Heng 7228 9.76 83.33 6.50 16.67 -1
冀师02-1 Jishi 02-1 0 0 0 0 1
石新733 Shixin 733 0 0 0 0 -3
石4185 Shi 4185 14.29 55.56 15.87 22.22 0
高优503 Gaoyou 503 0 0 0 0 -3
藁城8901 Gaocheng 8901 0 0 0 0 -2
石家庄8号 Shijiazhuang 8 0.92 0 0 0 -2
石优17 Shiyou 17 0 0 0 0 0
衡观33 Hengguan 33 2.00 0 0 0 -2
偃展4110 Yanzhan 4110 1.27 0 0 0 -2
百农3217 Bainong 3217 1.54 50.00 0 0 -2
豫麦13 Yumai 13 9.52 0 0 33.33 1
中麦895 Zhongmai 895 6.48 14.29 3.70 28.57 -2
周麦19 Zhoumai 19 6.60 0 0 0 0
新麦9408 Xinmai 9408 1.41 0 0 0 -1
豫麦21 Yumai 21 0 0 0 0 0
豫麦47 Yumai 47 0 0 0 0 2
周麦25 Zhoumai 25 8.94 0 0 18.75 -3
兰考2号 Lankao 2 0 0 0 0 -2
中麦871 Zhongmai 871 0 0 0 0 -3
豫麦49 Yumai 49 2.59 0 0 0 -2
新麦9号 Xinmai 9 0 0 0 0 -3
兰考906 Lankao 906 14.00 0 0 0 -3
洛旱2号 Luohan 2 2.59 66.67 10.34 33.33 -2
豫麦57 Yumai 57 0 0 0 0 -2
豫麦18 Yumai 18 0 0 0 0 -4
周麦12 Zhoumai 12 1.20 0 0 0 -2
矮抗58 Aikang 58 0 0 0 0 -2
周麦30 Zhoumai 30 1.72 0 0 0 -2
豫麦34 Yumai 34 0 0 0 0 -3
豫麦7号 Yumai 7 4.69 0 0 16.67 -5
郑麦366 Zhengmai 366 0 0 0 0 0
中育5号 Zhongyu 5 1.36 0 0 0 -2
周麦32 Zhoumai 32 2.82 0 0 0 -2
中育9号 Zhongyu 9 9.02 0 0 27.27 -4
郑引1号 Zhengyin 1 0 0 0 0 -4
豫麦50 Yumai 50 0 0 0 0 -5
周麦23 Zhoumai 23 0 0 0 0 -1
周麦28 Zhoumai 28 1.53 0 0 33.33 -2
豫麦2号 Yumai 2 15.00 46.67 8.00 26.67 -1
周麦26 Zhoumai 26 0 0 0 0 -1
中麦875 Zhongmai 875 5.53 7.69 0.85 23.08 -2
花培5号 Huapei 5 2.36 0 0 0 -1
兰考24 Lankao 24 6.32 45.45 5.75 9.09 -3
济麦20 Jimai 20 0 0 0 0 -2
鲁麦9号 Lumai 9 0.49 0 0 0 -2
汶农5号 Wennong 5 0 0 0 0 -3
烟农18 Yannong 18 1.83 25.00 3.20 0 -5
鲁麦14 Lumai 14 2.50 40.00 2.50 0 -4
济宁16 Jining 16 0 0 0 0 -3
烟农15 Yannong 15 10.49 0 0 0 -4
鲁麦21 Lumai 21 6.06 0 0 50.00 -3
淄选2号 Zixuan 2 0.96 0 0 0 -2
泰山1号 Taishan 1 1.78 66.67 4.14 0 -2
济南17 Jinan 17 0 0 0 0 -1
汶农14 Wennong 14 7.41 0 0 10.00 -3
鲁麦8号 Lumai 8 0 0 0 0 -3
良星99 Liangxing 99 0 0 0 0 -3
鲁原502 Luyuan 502 1.50 0 0 0 -2
泰山5号 Taishan 5 1.18 100.00 2.35 0 -1
济麦21 Jimai 21 0 0 0 0 -3
鲁麦23 Lumai 23 0 0 0 0 -4
山农20 Shannong 20 4.07 0 0 0 -1
临麦4号 Linmai 4 0 0 0 0 -3
临抗12 Linkang 12 0 0 0 0 -4
碧蚂1号 Bima 1 1.69 0 0 0 -1
陕农78-59 Shaannong 78-59 1.80 0 0 0 -2
陕麦509 Shaanmai 509 3.25 25.00 1.63 0 -1
西农979-005 Xinong 979-005 2.48 0 0 0 -2
西农2000-7 Xinong 2000-7 0 0 0 0 0
陕麦354 Shaanmai 354 0.45 0 0 0 0
西农291 Xinong 291 5.00 20.00 0 0 -2
小偃54 Xiaoyan 54 0 0 0 0 0
小偃6号 Xiaoyan 6 0 0 0 0 -4
西农1376 Xinong 1376 14.75 83.33 22.95 0 -2
陕麦512 Shaanmai 512 1.95 25.00 0.98 0 -3
矮丰3号 Aifeng 3 0 0 0 0 -4
陕优225 Shaanyou 225 0 0 0 0 -2
武农148 Wunong 148 0 0 0 0 -3
陕麦229 Shaanmai 229 0 0 0 0 -5
小偃81 Xiaoyan 81 0 0 0 0 -4
陕麦94 Shaanmai 94 6.67 0 0 44.44 -2
碧蚂4号 Bima 4 1.91 0 0 0 -2

表1

小麦花药培养过程中各类培养基的成分"

培养基种类
Medium type
基本培养基
Basic medium
外源物1
Additive 1
(mg L-1)
外源物2
Additive 2
(mg L-1)
蔗糖含量
Sucrose content
(g L-1)
琼脂含量
Agar content
(g L-1)
诱导培养基
Induction medium
C17 2,4D (2.0) KT (0.5) 90.0 7.0
分化培养基
Differentiation medium
MS NAA (1.0) KT (1.0) 30.0 5.0
壮根培养基
Strong root medium
1/2MS MET (3.0) KT (1.0) 80.0 8.0

图1

不同小麦品种小孢子发育最佳取样期的镜检结果和穗部外观形态差异 A1: 单核早期; A2: 单核中期; A3: 单核晚期; A4: 二核期; A5: 三核期。标尺为20 μm。B: 穗部形态, 箭头指向穗顶部, 差异体现在穗顶部距离叶耳的长度, 标尺为1 cm。C: 94个温室生长小麦品种最佳取样窗口期时的穗部形态差异。D: 35份小麦品种在2种生长环境中最佳取样时期的穂部形态对比。"

附表2

35份田间生长小麦品种的愈伤诱导率和取样特征"

品种
Variety
愈伤诱导率
Callus induction rate (%)
取样特征
Sampling
feature (cm)
品种
Variety
愈伤诱导率
Callus induction rate (%)
取样特征
Sampling
feature (cm)
西农1376 Xinong 1376 2.8986 -3 周麦19 Zhoumai 19 3.0769 0
石4185 Shi 4185 5.8065 0 兰考906 Lankao 906 17.0455 -2
豫麦2号Yumai 2 3.3333 -1 山农20 Shannong 20 2.4390 -1
衡7228 Heng 7228 0 -1 烟农15 Yannong 15 0 -3
中麦895 Zhongmai 895 4.7619 -1 百农3217 Bainong 3217 0.5236 -2
中麦875 Zhongmai 875 1.8692 -2 鲁麦9号Lumai 9 1.3333 -2
豫麦18 Yumai 18 0 -3 宿0663 Su 0663 2.1277 -1
偃展4110 Yanzhan 4110 6.2500 -1 济宁16 Jining 16 2.8571 -2
鲁麦21 Lumai 21 7.8431 -2 石新733 Shixin 733 1.7964 -2
郑麦366 Zhengmai 366 1.4493 0 皖麦33 Wanmai 33 0 -3
豫麦49 Yumai 49 0 -1 周麦25 Zhoumai 25 0 -3
豫麦21 Yumai 21 0 0 豫麦34 Yumai 34 0 -2
周麦32 Zhoumai 32 2.5000 -2 郑引1号Zhengyin 1 0 -3
花培5号Huapei 5 13.8298 0 周麦23 Zhoumai 23 0.6452 0
陕麦94 Shaanmai 94 3.1915 -2 周麦26 Zhoumai 26 0 -1
豫麦13 Yumai 13 0 0 石优17 Shiyou 17 2.8571 0
汶农14 Wennong 14 0 -2 衡观33 Hengguan 33 0.6667 -2
中育9号Zhongyu 9 13.1387 -2

表2

94份小麦品种的花药培养力相关指标值"

花培力指标
Index of anther culture ability
数量Number 范围
Range
均值
Mean
标准差
SD
方差
Variance
愈伤诱导率 Callus induction rate 94 0-0.150 0.023 0.037 0.001
绿芽分化率 Green shoot differentiation 49 0-1.000 0.158 0.270 0.073
白芽分化率 Albino shoot differentiation rate 49 0-0.600 0.093 0.155 0.024
绿苗产率 Green plantlet production rate 49 0-0.230 0.020 0.047 0.002

图2

花药培养关键阶段图示及相关性状的小麦品种频次分布 A、C、E和G: 相关性状的小麦品种频次分布; B: 愈伤组织; D: 绿芽和白芽; F: 绿苗和白苗; H: 染色体加倍处理。图B、D、F、H标尺分别为1 mm、1 cm、2 cm和5 cm。"

图3

花培力性状之间的相关性 图A至D中r代表任意2个花药培养力相关性状间的Spearman相关系数, P-value均小于0.0001, 相关性达到极显著水平。"

图4

2种生长环境小麦花药培养的愈伤诱导率Bland-Altman分析图 图中Y轴为愈伤诱导率差值, X轴为愈伤诱导率的平均值, 上下2条红色虚线表示95%一致性界限的上下限(均值差±1.96SD)。中间黑色虚线表示差值均数(Bias = 0.041), 中间黑色实线表示0值, 样本量为35个品种。"

表3

高花培力小麦品种的农艺性状"

品种
Variety
株高
Plant height
(cm)
穗粒数
Kernels per spike
千粒重
TKW
(g)
品种特性
Varietal characteristic
参考
Reference
西农1376 Xinong 1376 73.33 35.50 42.06 早熟、高产, 遗传转化率高
Early maturity, high yield, high genetic transform rate
[19]
石4185
Shi 4185
78.00 34.00 37.00 花培育种优良亲本
Excellent parent for breeding by anther culture
农博数据, [18]
Nongbo data, [18]
豫麦2号
Yumai 2
85.00 36.00-38.00 广适、丰产, 骨干亲本
Widely suitable, fertile, backbone parent
农博数据, [20]
Nongbo data, [20]
衡7228
Heng 7228
75.00 37.00 40.00 高产、节水
High yield, water economy
农博数据 Nongbo data
兰考24
Lankao 24
73.67 46.29 41.41 河南荥阳测定
Measured in Xingyang, Henan province
中麦895
Zhongmai 895
70-75 35.00 48.00-52.00 高产、耐热 High yield, heat resistance 农博数据, [21]
Nongbo data, [21]

表4

花药培养效果的品种间比较"

品种
Variety
愈伤诱导率
Callus induction rate (%)
绿芽分化率
Green shoot
differentiation rate (%)
绿苗产率
Green plantlet
production rate (%)
白芽分化率
Albino shoot
differentiation rate (%)
参考
Reference
藁城8901 0 0 0 0 本研究 This study
Gaocheng 8901 4.94 9.57 0.39 11.90 [15]
偃展4110 1.27 0 0 0 本研究 This study
Yanzhan 4110 3.97 0 0 0 [15]
洛旱2号 2.59 66.67 10.34 33.33 本研究 This study
Luohan 2 9.33 0 0 1.28 [15]
石4185 14.29 55.56 15.87 22.22 本研究 This study
Shi 4185 6.67 29.45 2.39 1.67 [15]

附表3

供试品种信息"

品种
Variety
育成年份
Year of
cultivation
亲本
Parent
泰山5号Taishan 5 1975 (辉县红×阿勃) F1×白欧柔(Huixianhong×Abo) F1×Bai’ourou
藁城8901 Gaocheng 8901 1990 冀麦26×鲁麦1号Jimai 26×Lumai 1
西农1376 Xinong 1376 1992 西农84G6×比16 Xinong 84G6×Bi 16
陕优225 Shaanyou 225 1992 小偃6号×NS2761 Xiaoyan 6×NS2761
新麦9408 Xinmai 9408 1994 新麦9号×豫麦21 Xinmai 9×Yumai 21
豫麦34 Yumai 34 1994 豫麦13×鲁麦14 Yumai 13×Lumai 14
陕麦229 Shaanmai 229 1995 (小偃6号×陕7853) F1×TB902 (Xiaoyan 6×Shaan7853) F1×TB902
鲁麦21 Lumai 21 1996 烟中144×宝丰7228 Yanzhong 144×Baofeng 7228
鲁麦23 Lumai 23 1996 鲁麦8号×高赖小麦Lumai 8×Gaolaixiaomai
淮麦20 Huaimai 20 1997 豫麦13×鲁麦14 Yumai 13×Lumai 14
皖麦33 Wanmai 33 1997 安农2号×百农3217 Annong 2×Bainong 3217
豫麦47 Yumai 47 1997 豫麦13×鲁麦14 Yumai 13×Lumai 14
皖麦29 Wanmai 29


1997


(一粒小麦×阿夫乐尔) F0射线处理/NPFP-5442/3/ALONDRA/4/2411/矮丰3号//7679-29-2-2
(Einkorn wheat × Avrora) F0 treated by ray /NPFP-5442/3/ALONDRA/4/2411/ Aifeng 3//7679-29-2-2
石新733 Shixin 733 1998 大拇指矮×石新163 Damuzhi’ai×Shixin 163
豫麦57 Yumai 57 1999 豫麦18×80 (6)-3-3-10 Yumai 18×80 (6)-3-3-10
高优503 Gaoyou 503 2001 豫麦34×鲁麦14 Yumai 34×Lumai 14
陕麦512 Shaanmai 512 2001 陕麦150MS2×陕354 Shaanmai 150MS2×Shaan 354
兰考906 Lankao 906 2001
中育5号Zhongyu 5 2001 冀5418×豫西832 Ji 5418×Yuxi 832
小偃81 Xiaoyan 81 2001 小偃54×8602 Xiaoyan 54×8602
陕农78-59 Shaannong 78-59 2002
偃展4110 Yanzhan 4110 2003 偃展1号×豫麦18 Yanzhan 1×Yumai 18
周麦19 Zhoumai 19 2003 周麦13×豫麦49 Zhoumai 13×Yumai 49
矮抗58 Aikang 58 2003 周麦11×豫麦49 Zhoumai 11×Yumai 49
济麦20 Jimai 20 2003 济麦19×鲁麦14 Jimai 19×Lumai 14
新麦9号Xinmai 9 2003 百泉3047-3×内乡82C6 Baiquan 3047-3×Neixiang 82C6
汶农5号Wennong 5 2003 鲁麦21号×泰山5号Lumai 21×Taishan 5
中育9号Zhongyu 9 2004 豫麦21号×92R139 Yumai 21×92R139
济宁16 Jining 16 2004 (烟1934/824046) F1×(聊83-1/2114) F1 (Yan 1934/824046) F1×(Liao 83-1/2114) F1
石家庄8号 Shijiazhuang 8 2005 石4185×石新733 Shi 4185×Shixin 733
洛旱2号Luohan 2 2005 豫麦18×洛旱1号Yumai 18×Luohan 1
郑麦366 Zhengmai 366 2005 豫麦34×周麦16 Yumai 34×Zhoumai 16
良星99 Liangxing 99 2005 济麦20×鲁麦23 Jimai 20×Lumai 23
阜936 Fu 936 2005 (皖麦20×冀5418) F1×内乡184 (Wanmai 20×Ji 5418) F1×Neixiang 184
皖麦52 Wanmai 52 2005 郑州8329×皖麦19 Zhengzhou 8329×Wanmai 19
皖麦50 Wanmai 50 2005 豫麦29×皖麦19 Yumai 29×Wanmai 19
皖麦53 Wanmai 53 2005 豫麦29×皖麦19 Yumai 29×Wanmai 19
衡7228 Heng 7228 2005 冀5418×衡5041 Ji 5418×Heng 5041
石优17 Shiyou 17 2005 冀935352×鲁麦21 Ji 935352×Lumai 21
衡观33 Hengguan 33 2006 衡7228×石4185 Heng 7228×Shi 4185
济麦21 Jimai 21 2006 济麦19×鲁麦14 Jimai 19×Lumai 14
花培5号Huapei 5 2006 豫麦18×花4-3 Yumai 18×Hua 4-3
临麦4号Linmai 4 2006 鲁麦23号×临9015 Lumai 23×Lin 9015
西农2000-7 Xinong 2000-7
2006
(西农2611×386) F1×(小偃22×陕354) F1 (Xinong 2611×386) F1×(Xiaoyan 22×Shaan 354) F1
周麦25 Zhoumai 25 2008 周麦16×豫麦49 Zhoumai 16×Yumai 49
中麦895 Zhongmai 895 2010 中麦16×周麦18 Zhongmai 16×Zhoumai 18
周麦23 Zhoumai 23 2010 周麦16×豫麦49 Zhoumai 16×Yumai 49
鲁原502 Luyuan 502 2010 济麦22×鲁麦14 Jimai 22×Lumai 14
汶农14 Wennong 14 2010 系84139//9215/876161 Xi 84139//9215/876161
周麦26 Zhoumai 26 2012 周麦16×百农64 Zhoumai 16×Bainong 64
周麦28 Zhoumai 28 2013 周麦16×周麦22 Zhoumai 16×Zhoumai 22
石新828 Shixin 828 2013 石新163×石新422 Shixin 163×Shixin 422
周麦32 Zhoumai 32 2014 矮抗58×周麦24 Aikang 58×Zhoumai 24
中麦875 Zhongmai 875 2014 周麦16×荔垦4号Zhoumai 16×Liken 4
周麦30 Zhoumai 30 2015 周麦22×周麦18 Zhoumai 22×Zhoumai 18
山农20 Shannong 20 2015 济麦22×山农15 Jimai 22×Shannong 15
碧蚂1号Bima 1 1950s 碧玉麦×蚂蚱麦Biyumai×Mazhamai
碧蚂4号Bima 4 1950s 碧玉麦×蚂蚱麦Biyumai×Mazhamai
郑引1号Zhengyin 1 1960s 引自意大利的Strampelli from Italian strampelli
豫麦2号Yumai 2 1970s 碧蚂4号×阿夫Bima 4×Funo
泰山1号Taishan 1 1970s 碧蚂4号×欧柔Bima 4×Ourou
豫麦13 Yumai 13 1980s 郑州761×偃师4号Zhengzhou 761×Yanshi 4
豫麦21 Yumai 21 1980s 郑州761×偃师9号Zhengzhou 761×Yanshi 9
豫麦18 Yumai 18 1980s 豫麦2号×偃师4号Yumai 2×Yanshi 4
豫麦7号Yumai 7 1980s 郑州761×偃师4号 Zhengzhou 761×Yanshi 4
鲁麦9号Lumai 9 1980s 泰山1号×鲁麦5号Taishan 1×Lumai 5
鲁麦14 Lumai 14 1980s 泰山1号×鲁麦5号Taishan 1×Lumai 5
烟农15 Yannong 15 1980s 烟农73×鲁麦1号Yannong 73×Lumai 1
鲁麦8号Lumai 8 1980s 泰山1号×鲁麦5号Taishan 1×Lumai 5
小偃6号Xiaoyan 6 1980s 小偃5号×中间偃麦草Xiaoyan 5×Zhongjianyanmaicao
石4185 Shi 4185 1990s 冀麦30×鲁麦14 Jimai 30×Lumai 14
百农3217 Bainong 3217 1990s 百农791×豫麦13 Bainong 791×Yumai 13
豫麦49 Yumai 49 1990s 豫麦13×鲁麦14 Yumai 13×Lumai 14
烟农18 Yannong 18 1990s 烟农15×鲁麦14 Yannong 15×Lumai 14
济南17 Jinan 17 1990s 鲁麦14×济南13 Lumai 14×Jinan 13
石家庄15 Shijiazhuang 15 2000s 石4185×冀麦38 Shi 4185×Jimai 38
西农979-005 Xinong 979-005 2010s 西农979×周麦18 Xinong 979×Zhoumai 18
矮丰3号Aifeng 3 咸农39号×丰产3号Xiannong 39×Fengchan 3
周麦12 Zhoumai 12 周8425A×SWD73295 Zhou 8425A×SWD73295
宿0663 Su 0663
宿农6号Sunong 6
冀师02-1 Jishi 02-1
兰考2号Lankao 2
中麦871 Zhongmai 871
豫麦50 Yumai 50
兰考24 Lankao 24
淄选2号Zixuan 2
临抗12 Linkang 12
陕麦509 Shaanmai 509
陕麦354 Shaanmai 354
西农291 Xinong 291
小偃54 Xiaoyan 54
武农148 Wunong 148
陕麦94 Shaanmai 94
[1] Ferrie A M R, Bhowmik P, Rajagopalan N, Kagale S. CRISPR/Cas9-mediated targeted mutagenesis in wheat doubled haploids. Methods Mol Biol, 2020, 2072: 183-198.
doi: 10.1007/978-1-4939-9865-4_15 pmid: 31541447
[2] Srivastava P, Bains N S. Biotechnol Crop Improvement, Volume 1. Switzerland: Springer International Publishing AG, 2018.
[3] Eliby S, Bekkuzhina S, Kishchenko O, Iskakova G, Kylyshbayeva G, Jatayev S, Soole K, Langridge P, Borisjuk N, Shavrukov Y. Developments and prospects for doubled haploid wheat. Biotechnol Adv, 2022, 60: 108007.
[4] 王炜, 叶春雷, 杨随庄, 陈琛, 罗俊杰. 花药培养技术在小麦种质资源创制及育种中的应用. 中国种业, 2018, (11): 25-29.
Wang W, Ye C L, Yang S Z, Chen C, Luo J J. Application of Anther culture technique in wheat germplasm creation and breeding. China Seed Ind, 2018, (11): 25-29 (in Chinese with English abstract).
[5] 李辉, 陈孝, 辛志勇, 马有志, 徐惠君. 普通小麦-簇毛麦6DL/6VS抗白粉病易位系的选育及鉴定. 中国农业科学, 1999, 32: 9-17.
doi: 10.3864/j.issn.0578-1752.1999-32-05-9-17
Li H, Chen X, Xin Z Y, Ma Y Z, Xu H J. Development and identification of wheat-Haynaldia villosa 6DL/6VS translocation lines with powdery mildew resistance. Sci Agric Sin, 1999, 32: 9-17 (in Chinese with English abstract).
[6] 翁跃进, 董玉琛. 普通小麦-顶芒山羊草异源附加系的创建和鉴定: I. 小麦花药培养对创建普通小麦-顶芒山羊草异源附加系的作用. 作物学报, 1995, 21: 39-44.
Weng Y J, Dong Y C. Development of Aegilops comosa addition lines in common wheat (Triticum aestivum L.): I. effection of wheat anther culture to development of Aegilops comosa addition lines in common wheat. Acta Agron Sin, 1995, 21: 39-44 (in Chinese with English abstract).
[7] 刘录祥, 郭会君, 赵林姝, 李军辉, 古佳玉, 赵世荣, 王晶. 植物诱发突变技术育种研究现状与展望. 核农学报, 2009, 23: 1001-1007.
doi: 10.11869/hnxb.2009.06.1001
Liu L X, Guo H J, Zhao L S, Li J H, Gu J Y, Zhao S R, Wang J. Current status and outlook perspectives of induced mutations for plant improvement. J Nucl Agric Sci, 2009, 23: 1001-1007 (in Chinese with English abstract).
[8] Orłowska R, Pachota K A, Machczyńska J, Niedziela A, Makowska K, Zimny J, Bednarek P T. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron J Biotechnol, 2020, 43: 8-15.
[9] Germanà M A. Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult, 2011, 104: 283-300.
[10] 高润红, 郭桂梅, 何婷, 杜志钊, 任金宝, 刘成洪, 陆瑞菊. 大麦旗叶距对小孢子发育时期、愈伤组织诱导以及绿苗再生的影响. 南京农业大学学报, 2021, 44: 36-41.
Gao R H, Guo G M, He T, Du Z Z, Ren J B, Liu C H, Lu R J. Effects of the flag leaf space on microspore developmental stage, callus induction and green plant regeneration in barley. J Nanjing Agric Univ, 2021, 44: 36-41 (in Chinese with English abstract).
[11] Mayakaduwa D M R G, Silva T D. A cytological indicator allows rapid assessment of microspore maturity, leading to improved in vitro anther response in indica rice (Oryza sativa L.). Vitro Cell Dev Biol Plant, 2017, 53: 591-597.
[12] Warchoł M, Czyczyło-Mysza I, Marcińska I, Dziurka K, Noga A, Kapłoniak K, Pilipowicz M, Skrzypek E. Factors inducing regeneration response in oat (Avena sativa L.) anther culture. Vitro Cell Dev Biol Plant, 2019, 55: 595-604.
[13] Lantos C, Weyen J, Orsini J M, Gnad H, Schlieter B, Lein V, Kontowski S, Jacobi A, MihÁly R, Broughton S, et al. Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programmes. Plant Breed, 2013, 132: 149-154.
[14] Santra M, Ankrah N, Santra D K, Kidwell K K. An improved wheat microspore culture technique for the production of doubled haploid plants. Crop Sci, 2012, 52: 2314-2320.
[15] 赵林姝, 刘录祥, 古佳玉, 谢永盾, 郭会君, 赵世荣, 李军辉, 熊宏春. 冬小麦高花药培养力基因型的筛选. 麦类作物学报, 2017, 37: 1294-1300.
Zhao L S, Liu L X, Gu J Y, Xie Y D, Guo H J, Zhao S R, Li J H, Xiong H C. Screening of winter wheat germplasms with high anther culture ability. J Triticeae Crops, 2017, 37: 1294-1300 (in Chinese with English abstract).
[16] 吕学莲, 白海波, 蔡正云, 董建力, 高晓原, 陈雪, 李树华. 小麦花药培养的基因型效应及优良基因型筛选. 中国农学通报, 2011, 27(33): 13-17.
Lyu X L, Bai H B, Cai Z Y, Dong J L, Gao X Y, Chen X, Li S H. Effect of genotype on wheat anther culture and selection of choiceness genotype. Chin Agric Sci Bull, 2011, 27(33): 13-17 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2011-1802
[17] 姜秀芳, 郑继周, 邓春霞, 韩玉林, 王凤真. 小麦花培材料的筛选和利用. 中国农学通报, 2005, 21(2): 62-64.
Jiang X F, Zheng J Z, Deng C X, Han Y L, Wang F Z. Screening and utilization of wheat flower culture materials. Chin Agric Sci Bull, 2005, 21(2): 62-64 (in Chinese with English abstract).
[18] 王炜, 陈琛, 叶春雷, 贺小宝, 杜旺喜, 王云贵, 杨芳萍, 杨文雄, 杨随庄, 王方, 等. 甘肃主栽小麦品种及骨干亲本花药培养特性评价及分析. 核农学报, 2016, 30: 1059-1066.
doi: 10.11869/j.issn.100-8551.2016.06.1059
Wang W, Chen C, Ye C L, He X B, Du W X, Wang Y G, Yang F P, Yang W X, Yang S Z, Wang F, et al. Evaluation and analysis of anther culture characteristics in Gansu wheat cultivars and backbone parents. J Nucl Agric Sci, 2016, 30: 1059-1066 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2016.06.1059
[19] 朱建楚, 贺学礼, 王辉. 西农1376小麦早熟高产的生物学特性分析. 麦类作物学报, 1996, 27: 31-33.
Zhu J C, He X L, Wang H. Biological characteristics of early maturity and high yield of Xinong 1376 wheat. J Triticeae Crops, 1996, 27: 31-33 (in Chinese).
[20] 朱有朋, 郭春燕, 孙文鑫, 马彩艳, 袁水泉, 詹克慧. 小麦骨干亲本豫麦2号的育种价值分析. 中国农学通报, 2009, 25(19): 50-54.
Zhu Y P, Guo C Y, Sun W X, Ma C Y, Yuan S Q, Zhan K H. Breeding value of the wheat corner stone parent Yumai 2. Chin Agric Sci Bull, 2009, 25(19): 50-54 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2009-0997
[21] 张勇, 阎俊, 肖永贵, 郝元峰, 张艳, 徐开杰, 曹双河, 田宇兵, 李思敏, 闫俊良, 等. 中麦895高产稳产优质特性遗传解析. 中国农业科学, 2021, 54: 3158-3167.
doi: 10.3864/j.issn.0578-1752.2021.15.002
Zhang Y, Yan J, Xiao Y G, Hao Y F, Zhang Y, Xu K J, Cao S H, Tian Y B, Li S M, Yan J L, et al. Characterization of wheat cultivar Zhongmai 895 with high yield potential, broad adaptability, and good quality. Sci Agric Sin, 2021, 54: 3158-3167 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.15.002
[22] 李慧, 赵林姝, 古佳玉, 郭会君, 谢永盾, 熊宏春, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦花药培养体系优化及高再生力基因型的筛选. 植物遗传资源学报, 2022, 23: 738-745
doi: 10.13430/j.cnki.jpgr.20211021003
Li H, Zhao L S, Gu J Y, Guo H J, Xie Y D, Xiong H C, Zhao S R, Ding Y P, Xu Y H, Liu L X. Optimizing of anther culture system and screening wheat genotypes with higher regeneration ability. J Plant Genetic Resour, 2022, 23: 738-745 (in Chinese with English abstract).
[23] 蔡正云, 吕学莲, 白海波, 董建力, 段敦亮, 李树华, 魏亦勤. 基因型对小麦花药培养的影响研究. 广东农业科学, 2014, 41(24): 1-5.
Cai Z Y, Lyu X L, Bai H B, Dong J L, Duan D L, Li S H, Wei Y Q. Effects of genotypes on wheat anther culture. Guangdong Agric Sci, 2014, 41(24): 1-5 (in Chinese with English abstract).
[24] 王宁, 许铭, 王建锋, 王浩庭, 韩德俊, 康振生, 韩青梅. 转LTP基因T0代小麦的获得及抗条锈病鉴定. 中国农业大学学报, 2015, 20(3): 9-14.
Wang N, Xu M, Wang J F, Wang H T, Han D J, Kang Z S, Han Q M. Wheat T0 generation of transgenic LTP genes and identification of resistance to stripe rust. J China Agric Univ, 2015, 20(3): 9-14 (in Chinese with English abstract).
[1] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[2] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[3] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[4] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[5] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[6] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[7] 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086.
[8] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[9] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[10] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[11] 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813.
[12] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[13] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[14] 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547.
[15] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!