欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 2875-2885.doi: 10.3724/SP.J.1006.2025.55022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

东南沿海短绒野大豆两种代表性生境自然种群的空间遗传结构特征:种群内取样策略研究

王浩辰1,2(), 王克晶1, 韩娟2,*(), 李向华1,*()   

  1. 1 中国农业科学院作物科学研究所资源中心, 北京 100081
    2 西北农林科技大学农学院, 陕西杨凌 712100
  • 收稿日期:2025-03-21 接受日期:2025-08-13 出版日期:2025-11-12 网络出版日期:2025-08-21
  • 通讯作者: *韩娟, E-mail: hjepost@nwsuaf.edu.cn; 李向华, E-mail: lixianghua@caas.cn
  • 作者简介:E-mail: wanghaochen@nwafu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFD1200103)

Spatial genetic structure characteristics of natural populations of Glycine tomentella in two representative habitats in the southeast coast, China: a study of intrapopulation sampling strategy

WANG Hao-Chen1,2(), WANG Ke-Jing1, HAN Juan2,*(), LI Xiang-Hua1,*()   

  1. 1 Resource Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 College of Agriculture, Northwest Agriculture & Forestry University, Yangling 712100, Shaanxi, China
  • Received:2025-03-21 Accepted:2025-08-13 Published:2025-11-12 Published online:2025-08-21
  • Contact: *E-mail: hjepost@nwsuaf.edu.cn; E-mail: lixianghua@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1200103)

摘要:

短绒野大豆为国家二级保护植物, 是我国重要的遗传资源, 对栽培大豆育种有潜在的利用价值。由于自花授粉特性的基因流限制及环境异质性, 短绒野大豆居群内的个体在空间分布格局上往往会出现遗传斑块。为探究短绒野大豆在人为干扰程度低的普通天然居群和干扰程度高的墓地居群中的遗传结构差异, 也为制定受干扰程度不同的居群样本取样策略, 本研究利用24对新开发的物种特异SSR分子标记, 分析了受干扰程度不同的短绒野大豆2个天然居群的遗传多样性和空间遗传结构。结果显示: (1) 干扰程度高的墓地群天然居群(B)平均遗传多样性水平不低于干扰程度低的平地天然居群(A); (2) 空间自相关分析表明, 短绒野大豆居群内个体在遗传背景上存在空间遗传斑块, 2种受干扰程度不同的生境居群遗传斑块大小存在差异: 居群A在17.44 m空间范围内个体有显著亲缘关系, 而居群B在14.59 m空间范围内个体有显著亲缘关系; (3) 空间自相关分析和Mantel检验显示, 人为干扰程度高的居群其植株个体间的遗传亲缘关系在空间距离维度上降低, 空间自相关距离显著缩短; (4) 通过使用Python模拟不同的取样数量, 当Nei氏基因多样性指数、香农信息指数和有效等位基因数均达到居群总体的95%时, 居群A取样至少需要20、30和30株, 而居群B取样需要20、35和50株。根据本文的研究, 建议通常的短绒野大豆种质居群取样时, 取样数量至少保证30株, 株间距离保持15~18 m。

关键词: 取样策略, 遗传结构, 遗传多样性, SSR标记, 短绒野大豆

Abstract:

Glycine tomentella is an important genetic resource in China, classified as a nationally protected plant (second-class), and holds significant potential for use in cultivated soybean breeding. Due to its self-pollinating nature and environmental heterogeneity, gene flow is limited, and individuals within G. tomentella populations often exhibit spatial genetic patchiness. To investigate the genetic structure of two primary habitat types in China—highly human-disturbed populations (cemetery natural populations) and minimally disturbed populations (flatland natural populations)—and to provide a theoretical basis for developing sampling strategies that preserve high levels of genetic diversity, this study employed 24 newly developed species-specific SSR markers to analyze genetic diversity and spatial genetic structure in two natural populations subject to different degrees of disturbance. The results showed that: (1) the average genetic diversity of the highly disturbed cemetery population (B) was not lower than that of the less disturbed natural population (A); (2) spatial autocorrelation analysis revealed that individuals in both populations exhibited genetic patch structures, with differing patch sizes: population A showed significant kinship within 17.44 m, while population B showed significant kinship within 14.59 m; (3) spatial autocorrelation and Mantel tests indicated that in highly disturbed populations, genetic relatedness between individuals declined with spatial distance, and the range of significant autocorrelation was reduced; (4) Python-based sampling simulations showed that to reach 95% of the total population values for Nei’s gene diversity index, Shannon’s information index and effective number of alleles at least 20, 30 and 30 individuals needed to be sampled in population A, and 20, 35, and 50 individuals in population B, respectively. Based on these findings, it is recommended that for routine germplasm collection of G. tomentella, a minimum of 30 individuals should be sampled, with an inter-plant spacing of 15-18 m.

Key words: sampling strategy, genetic structure, genetic diversity, SSR markers, Glycine tomentella

图1

取样单株位置分布示意图 图a、图b分别为居群A和居群B的取样植株分布示意图。"

表1

短绒野大豆天然居群内部取样地理位置信息"

取样行数编号
Number of rows
居群A Population A 居群B Population B
1 2 3 4 1 2 3 4 5
每行取样株与起始点距离
Distances between the sampled plants from the starting point in each row (m)
6.0 (1) 7.0 (15) 0 (38) 0.1 (64) 0 (1) 10.8 (22) 2.1 (38) 1.0 (57) 1.1 (84)
15.8 (2) 8.3 (16) 2.0 (39) 2.3 (65) 3.0 (2) 12.6 (23) 4.5 (39) 2.8 (58) 8.5 (85)
17.2 (3) 10.5 (17) 3.1 (40) 4.2 (66) 10.3 (3) 14.2 (24) 11.0 (40) 9.1 (59) 10.6 (86)
19.9 (4) 12.5 (18) 4.3 (41) 5.8 (67) 11.5 (4) 16.6 (25) 12.5 (41) 10.7 (60) 12.0 (87)
21.2 (5) 14.8 (19) 6.5 (42) 7.6 (68) 12.1 (5) 18.5 (26) 13.8 (42) 12.4 (61) 14.0 (88)
29.2 (6) 16.4 (20) 8.6 (43) 9.0 (69) 13.8 (6) 20.0 (27) 15.4 (43) 14.2 (62) 15.7 (89)
30.0 (7) 17.4 (21) 12.5 (44) 12.0 (70) 18.0 (7) 22.0 (28) 16.3 (44) 15.7 (63) 17.1 (90)
32.1 (8) 18.9 (22) 14.1 (45) 13.3 (71) 19.0 (8) 25.5 (29) 18.4 (45) 17.2 (64) 18.6 (91)
34.0 (9) 20.9 (23) 16.3 (46) 15.1 (72) 21.5 (9) 30.0 (30) 20.6 (46) 18.7 (65) 20.3 (92)
42.2 (10) 29.3 (24) 18.0 (47) 16.2 (73) 23.1 (10) 31.8 (31) 22.1 (47) 20.5 (66) 23.0 (93)
44.3 (11) 30.3 (25) 19.7 (48) 18.0 (74) 24.5 (11) 33.6 (32) 27.5 (48) 21.7 (67) 26.5 (94)
46.8 (12) 31.6 (26) 21.0 (49) 19.5 (75) 26.0 (12) 34.5 (33) 32. 5(49) 23.4 (68) 28.6 (95)
47.8 (13) 33.7 (27) 29.2 (50) 29.3(76) 27.1 (13) 36.1 (34) 33.9 (50) 26.9 (69) 30.2 (96)
50.0 (14) 34.7 (28) 31.0 (51) 31.6 (77) 28.0 (14) 37.3 (35) 36.6 (51) 28.5 (70) 31.2 (97)
37.0 (29) 32.9 (52) 32.7 (78) 30.8 (15) 38.3 (36) 42.0 (52) 30.4 (71) 33.2 (98)
38.5 (30) 34.2 (53) 34.7 (79) 31.8 (16) 45.9 (37) 42.6 (53) 31.5 (72) 34.9 (99)
40.6 (31) 35.7 (54) 35.7 (80) 33.5 (17) 43.7 (54) 33.6 (73) 36.8 (100)
42.2 (32) 36.9 (55) 36.7 (81) 35.0 (18) 47.8 (55) 34.8 (74) 38.4 (101)
44.0 (33) 38.4 (56) 38.1 (82) 36.7 (19) 49.0 (56) 36.2 (75) 39.7 (102)
45.5 (34) 39.7 (57) 39.8 (83) 37.9 (20) 38.0 (76) 41.5 (103)
46.5 (35) 41.5 (58) 41.7 (84) 48.5 (21) 40.2 (77) 42.7 (104)
47.7 (36) 42.7 (59) 43.5 (85) 41.5 (78) 44.4 (105)
50.0 (37) 44.0 (60) 44.5 (86) 43.1 (79) 45.5 (106)
45.6 (61) 46.2 (87) 44.7 (80) 50.0 (107)
46.6 (62) 46.6 (88) 46.3 (81)
49.0 (63) 47.9 (82)
50.0 (83)
总个数
Total number
88 107

表2

短绒野大豆24对SSR遗传标记的遗传多样性参数"

标记
Marker
Na Gt Ne He Ho PIC Gst Nm Fis ts (%)
DR_2 8 9 6.77 0.86 0 0.839 0.024 8.418 1.000 0
DR_23 4 4 2.71 0.63 0 0.556 0.630 0.145 1.000 0
DR_38 7 8 3.34 0.70 0 0.670 0.318 0.525 1.000 0
DR_45 13 14 5.46 0.82 0 0.804 0.237 0.785 1.000 0
DR_46 12 17 6.39 0.85 0.28 0.829 0.185 1.070 0.530 0.31
DR_49 8 9 5.00 0.80 0 0.776 0.046 4.629 1.000 0
DR_55 11 12 4.05 0.76 0 0.736 0.063 3.421 1.000 0
DR_57 12 13 7.37 0.87 0 0.855 0.070 3.091 1.000 0
DR_58 11 12 7.31 0.87 0.01 0.849 0.110 1.930 0.985 0.01
DR_85 9 10 3.91 0.75 0 0.707 0.001 37.702 1.000 0
DR_114 15 16 7.88 0.88 0 0.863 0.144 1.430 1.000 0
DR_120 5 5 3.64 0.73 0 0.677 0.192 1.017 1.000 0
DR_149 11 11 9.15 0.89 0 0.881 0.102 2.084 1.000 0
DR_151 10 11 6.51 0.85 0 0.833 0.095 2.249 1.000 0
DR_184 10 11 3.69 0.73 0 0.705 0.164 1.226 1.000 0
DR_213 7 8 3.33 0.70 0 0.665 0.020 9.540 1.000 0
DR_219 13 13 7.74 0.87 0 0.858 0.061 3.527 1.000 0
DR_231 5 7 2.60 0.62 0.01 0.562 0.377 0.406 0.984 0.01
DR_251 8 11 4.12 0.76 0.13 0.722 0.169 1.189 0.801 0.11
DR_278 10 13 7.42 0.87 0.01 0.854 0.050 4.290 0.986 0.01
DR_306 12 13 7.55 0.87 0 0.856 0.133 1.561 1.000 0
DR_324 11 11 6.24 0.84 0 0.821 0.157 1.292 1.000 0
DR_336 7 8 4.21 0.77 0 0.735 0.167 1.204 1.000 0
DR_383 7 9 4.41 0.78 0.03 0.749 0.213 0.895 0.958 0.02
平均Mean 9.42 10.63 5.45 0.79 0.02 0.767 0.155 1.393 0.969 0.02

表3

取样数量对短绒野大豆居群遗传多样性的影响"

遗传参数
Genetic index
观测等位基因数 Na 有效等位基因数 Ne Nei氏基因多样性指数 H 香农信息指数 I
A B A B A B A B
取样数量
Sampling size
5 2.60±0.27 3.20±0.22 2.26±0.24 2.82±0.23 0.47±0.06 0.60±0.04 0.79±0.11 1.04±0.09
10 3.40±0.22 4.61±0.26 2.62±0.18 3.69±0.24 0.53±0.03 0.68±0.02 0.97±0.07 1.33±0.07
15 3.74±0.20 5.41±0.28 2.75±0.13 3.96±0.20 0.55±0.02 0.71±0.02 1.00±0.05 1.45±0.06
20 3.40±0.22 5.95±0.24 2.82±0.16 4.14±0.20 0.56±0.02 0.72±0.02 1.05±0.05 1.51±0.05
25 4.21±0.16 6.25±0.25 2.88±0.13 4.24±0.19 0.56±0.01 0.73±0.01 1.06±0.03 1.53±0.04
30 4.32±0.17 6.57±0.24 2.91±0.12 4.37±0.14 0.57±0.02 0.73±0.01 1.09±0.04 1.56±0.03
35 4.47±0.15 6.79±0.24 2.96±0.10 4.39±0.15 0.57±0.01 0.74±0.01 1.10±0.03 1.57±0.04
40 4.59±0.15 6.99±0.22 2.98±0.10 4.44±0.14 0.58±0.01 0.74±0.01 1.12±0.03 1.59±0.03
45 4.68±0.11 7.10±0.22 2.98±0.08 4.47±0.12 0.57±0.01 0.74±0.01 1.12±0.02 1.59±0.03
50 4.73±0.14 7.31±0.20 2.99±0.07 4.52±0.13 0.58±0.01 0.74±0.01 1.12±0.02 1.61±0.03
55 4.78±0.14 7.46±0.14 3.00±0.06 4.57±0.09 0.58±0.01 0.74±0.01 1.12±0.02 1.62±0.02
60 4.86±0.13 7.59±0.17 3.01±0.06 4.59±0.11 0.58±0.01 0.75±0.01 1.13±0.02 1.63±0.02
65 4.92±0.12 7.66±0.12 3.02±0.05 4.61±0.07 0.58±0.01 0.75±0.01 1.13±0.02 1.63±0.02
70 4.99±0.09 7.73±0.12 3.04±0.04 4.61±0.08 0.58±0.00 0.75±0.01 1.14±0.01 1.63±0.02
75 5.01±0.10 7.84±0.11 3.04±0.04 4.64±0.06 0.58±0.01 0.75±0.00 1.14±0.01 1.64±0.01
80 5.06±0.07 7.88±0.12 3.04±0.03 4.64±0.05 0.58±0.00 0.75±0.00 1.14±0.01 1.64±0.01
A、B遗传多样性
Genetic diversity for A and B
5.13 8.21 3.04 4.70 0.58 0.75 1.14 1.66

图2

抽样群体遗传参数平均值占总体的百分率随取样量变化的S拟合曲线图 缩写同表2和表3。a: 居群A的S拟合曲线图; b: 居群B的S拟合曲线图。"

图3

基于取样植株遗传距离和株间距离的Mantel检验 图a、图b分别代表居群A和居群B的Mantel检验结果。"

图4

短绒野大豆取样居群内各植株的空间自相关分析 r: 空间自相关系数; U: 置信区间上限; L: 置信区间下限; a: 居群A的空间自相关分析; b: 居群B的空间自相关分析。横轴: 植株取样距离; 纵轴: 自相关系数。"

[1] Singh R J, Chung G H, Nelson R L. Landmark research in legumes. Genome, 2007, 50: 525-537.
pmid: 17632574
[2] 王克晶, 张郑伟, 李向华. 我国大豆属多年生种遗传资源研究. 中国种业, 2023, (12): 67-75.
Wang K J, Zhang Z W, Li X H. Studies on perennial species genetic resources of Chinese genus soybean (Glycine Willd.). China Seed Ind, 2023, (12): 67-75 (in Chinese with English abstract).
[3] Hwang E Y, Wei H, Schroeder S G, Fickus E W, Quigley C V, Elia P, Araya S, Dong F, Costa L, Ferreira M E, et al. Genetic diversity and phylogenetic relationships of annual and perennial Glycine species. G3: Gene Genom Genet, 2019, 9: 2325-2336.
[4] Wen L, Yuan C, Herman T K, Hartman G L. Accessions of perennial Glycine species with resistance to multiple types of soybean cyst nematode (Heterodera glycines). Plant Dis, 2017, 101: 1201-1206.
doi: 10.1094/PDIS-10-16-1472-RE pmid: 30682970
[5] Herman T K, Han J, Singh R J, Domier L L, Hartman G L. Evaluation of wild perennial Glycine species for resistance to soybean cyst nematode and soybean rust. Plant Breed, 2020, 139: 923-931.
[6] Kao W Y, Tsai T T. Tropic leaf movements, photosynthetic gas exchange, leaf d13C and chlorophyll a fluorescence of three soybean species in response to water availability. Plant Cell Environ, 1998, 21: 1055-1062.
[7] Kao W Y, Tsai T T, Tsai H C, Shih C N. Response of three Glycine species to salt stress. Environ Exp Bot, 2006, 56: 120-125.
[8] Lenis J M, Ellersieck M, Blevins D G, Sleper D A, Nguyen H T, Dunn D, Lee J D, Shannon J G. Differences in ion accumulation and salt tolerance among Glycine accessions: differences in salt tolerance among Glycine accessions. J Agron Crop Sci, 2011, 197: 302-310.
[9] Singh R J, Nelson R L. Intersubgeneric hybridization between Glycine max and G. tomentella: production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor Appl Genet, 2015, 128: 1117-1136.
doi: 10.1007/s00122-015-2494-0 pmid: 25835560
[10] 罗冉, 吴委林, 张旸, 李玉花. SSR分子标记在作物遗传育种中的应用. 基因组学与应用生物学, 2010, 29: 137-143.
Luo R, Wu W L, Zhang Y, Li Y H. SSR marker and its application to crop genetics and breeding. Genom Appl Biol, 2010, 29: 137-143 (in Chinese with English abstract).
[11] Tautz D, Trick M, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation. Nature, 1986, 322: 652-656.
[12] 李新海, 傅骏骅, 张世煌, 袁力行, 李明顺. 利用SSR标记研究玉米自交系的遗传变异. 中国农业科学, 2000, 33: 1-9.
doi: 10.3864/j.issn.0578-1752.2000-33-2-4-12
Li X H, Fu J H, Zhang S H, Yuan L X, Li M S. Genetic variation of inbred lines of maize detected by SSR markers. Sci Agric Sin, 2000, 33: 1-9 (in Chinese with English abstract).
[13] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析I. 群体结构及关联标记. 作物学报, 2008, 34: 1169-1178.
Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin, 2008, 34: 1169-1178 (in Chinese with English abstract).
[14] 周雨晴, 戴文婧, 杨羽清, 姚森洋, 周圆, 程智慧, 潘玉朋. 基于SSR标记的126份甜瓜种质遗传多样性分析. 西北农业学报, 2025, 34: 54-62.
Zhou Y Q, Dai W J, Yang Y Q, Yao S Y, Zhou Y, Cheng Z H, Pan Y P. Genetic diversity analysis of 126 melon germplasms based on SSR markers. Acta Agric Boreali-Occident Sin, 2025, 34: 54-62 (in Chinese with English abstract).
[15] 齐广勋, 王英男, 袁翠平, 王玉民, 刘晓冬, 李玉秋, 董英山, 赵洪锟. 基于SSR标记的不同地理生态型野生大豆遗传多样性分析. 大豆科学, 2021, 40: 334-343.
Qi G X, Wang Y N, Yuan C P, Wang Y M, Liu X D, Li Y Q, Dong Y S, Zhao H K. Genetic diversity analysis of wild soybean (Glycine soja) populations with different geographical ecotypes based on SSR markers. Soybean Sci, 2021, 40: 334-343 (in Chinese with English abstract).
[16] Takahashi Y, Li X H, Tsukamoto C, Wang K J. Categories and components of soyasaponin in the Chinese wild soybean (Glycine soja) genetic resource collection. Genet Resour Crop Evol, 2017, 64: 2161-2171.
[17] Wen Z X, Ding Y L, Zhao T J, Gai J Y. Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor Appl Genet, 2009, 119: 371-381.
[18] Kim K H, Lee S, Seo M J, Lee G A, Ma K H, Jeong S C, Lee S H, Park E H, Kwon Y U, Moon J K. Genetic diversity and population structure of wild soybean (Glycine soja Sieb. and Zucc.) accessions in Korea. Plant Genet Resour, 2014, 12: S45-S48.
[19] Li F, Sayama T, Yokota Y, Hiraga S, Hashiguchi M, Tanaka H, Akashi R, Ishimoto M. Assessing genetic diversity and geographical differentiation in a global collection of wild soybean (Glycine soja Sieb. et Zucc.) and assigning a mini-core collection. DNA Res, 2024, 31: dsae009.
[20] Wang X D, Li X H, Zhang Z W, Wang K J. Characterization of genetic diversity and structures in natural Glycine tomentella populations on the southeast islands of China. Genet Resour Crop Evol, 2019, 66: 47-59.
[21] 张郑伟. 中国多年生野生大豆Glycine tomentellaGlycine tabacina的遗传多样性研究. 中国农业科学院博士学位论文, 北京, 2020.
Zhang Z W. The Genetic Diversity Studies on Chinese Perennial Wild Soybean Glycine tomentella and Glycine tabacina. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2020 (in Chinese with English abstract).
[22] 金燕, 卢宝荣. 遗传多样性的取样策略. 生物多样性, 2003, 11(2): 155-161.
doi: 10.17520/biods.2003021
Jin Y, Lu B R. Sampling strategy for genetic diversity. Biodivers Sci, 2003, 11(2): 155-161 (in Chinese with English abstract).
[23] 黎裕, 王天宇, 田松杰, 石云素, 宋燕春. 利用分子标记分析遗传多样性时的玉米群体取样策略研究. 植物遗传资源学报, 2003, 4: 314-317.
Li Y, Wang T Y, Tian S J, Shi Y S, Song Y C. Sampling strategies of maize populations when molecular markers are used in genetic diversity analysis. J Plant Genet Resour, 2003, 4: 314-317 (in Chinese with English abstract).
[24] 陈坚, 林新坚, 钟少杰. 取样策略对SSR标记鉴别紫云英品种能力的影响. 植物遗传资源学报, 2015, 16: 1245-1251.
doi: 10.13430/j.cnki.jpgr.2015.06.015
Chen J, Lin X J, Zhong S J. Effect of sampling strategy on identification of cultivars of Astragalus sinicus L. by SSR marker. J Plant Genet Resour, 2015, 16: 1245-1251 (in Chinese with English abstract).
[25] Zhao R, Cheng Z, Lu W F, Lu B R. Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers. Chin Sci Bull, 2006, 51: 1219-1227.
[26] 朱维岳, 周桃英, 钟明, 卢宝荣. 基于遗传多样性和空间遗传结构的野生大豆居群采样策略. 复旦大学学报(自然科学版), 2006, 45: 321-327.
Zhu W Y, Zhou T Y, Zhong M, Lu B R. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure. J Fudan Univ (Nat Sci), 2006, 45: 321-327 (in Chinese with English abstract).
[27] Narzary D, Verma S, Mahar K S, Rana T S. A rapid and effective method for isolation of genomic DNA from small amount of silica-dried leaf tissues. Natl Acad Sci Lett, 2015, 38: 441-444.
[28] Brown A H D, Moran G F. lsozymes and the genetic resources of forest trees. In: Conkle MT, eds. lsozymes of North American Forest Trees and Forest Insects. Pacific South West Forest and Range Experiment Station Technical Report No.48, US Department of Agriculture, PSW-GTR, 1981. 1-10.
[29] Marshall D R, Brown A H D. Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawles JG, eds. Crop Genetic Resource for Today and Tomorrow. London: Cambridge University Press, 1975. pp 53-80.
[30] Jin Y, Zhang W J, Fu D X, Lu B R. Sampling strategy within a wild soybean population based on its genetic variation detected by ISSR markers. J Integr Plant Biol, 2003, 45: 995.
[31] 李磊, 郭蓉, 杜光辉, 郭鸿彦, 吕品, 许艳萍, 郭孟璧, 张园, 陈璇, 等. 基于SSR标记的大麻遗传多样性分析与品种鉴别的取样策略. 分子植物育种, 网络首发[2023-12-12], https://link.cnki.net/urlid/46.1068.S.20231211.1122.002.
Li L, Guo R, Du G H, Guo H Y, Lyu P, Xu Y P, Guo M B, Zhang Y, Chen X, et al. Sampling strategy for genetic diversity analysis and variety identification of hemp (Cannabis sativa L.) based on SSR markers. Mol Plant Breed, Published online [2023-12-12], https://link.cnki.net/urlid/46.1068.S.20231211.1122.002 (in Chinese with English abstract).
[32] 李乔乔, 王宇晴, 刘蕊, 邳植, 吴则东. 利用SSR分子标记探究甜菜种质资源的取样策略. 分子植物育种, 网络首发[2022-05-23]. https://kns.cnki.net/kcms/detail/46.1068.S.20220520.1754.017.html.
Li Q Q, Wang Y Q, Liu R, Pi Z, Wu Z D. Exploring the sampling strategy of sugar beet germplasm by SSR molecular markers. Mol Plant Breed, 2022, Published online [2022-05-23], https://kns.cnki.net/kcms/detail/46.1068.S.20220520.1754.017.html (in Chinese with English abstract).
[33] 张红香, 周道玮. 种子生态学研究现状. 草业科学, 2016, 33: 2221-2236.
Zhang H X, Zhou D W. Current status in seed ecology. Pratac Sci, 2016, 33: 2221-2236 (in Chinese with English abstract).
[34] Guillot G, Leblois R, Coulon A, Frantz A C. Statistical methods in spatial genetics. Mol Ecol, 2009, 18: 4734-4756.
doi: 10.1111/j.1365-294X.2009.04410.x pmid: 19878454
[35] 于顺利, 郎南军, 彭明俊, 赵琳, 郭永清, 郑科, 张立新, 温绍龙, 李晖. 种子雨研究进展. 生态学杂志, 2007, 26: 1646-1652.
Yu S L, Lang N J, Peng M J, Zhao L, Guo Y Q, Zheng K, Zhang L X, Wen S L, Li H. Research advances in seed rain. Chin J Ecol, 2007, 26: 1646-1652 (in Chinese with English abstract).
[36] 李军, 郑师章, 钱吉, 任文伟, 叶培宏. 野生大豆种子雨的研究. 应用生态学报, 1997, 8: 372-376.
Li J, Zheng S Z, Qian J, Ren W W, Ye P H. Seed rain of Glycine soja. Chin J Appl Ecol, 1997, 8: 372-376 (in Chinese with English abstract).
[37] 王克晶, 李向华. 中国野生大豆遗传资源搜集基本策略与方法. 植物遗传资源学报, 2012, 13: 325-334.
doi: 10.13430/j.cnki.jpgr.2012.03.001
Wang K J, Li X H. Fundamental strategies and methods for collection of wild soybean germplasm resources in China. J Plant Genet Resour, 2012, 13: 325-334 (in Chinese with English abstract).
[38] 何田华, 杨继, 饶广远. 植物居群遗传变异的空间自相关分析. 植物学通报, 1999, 16: 636-641.
He T H, Yang J, Rao G Y. Spatial autocorrelation analysis of plant population genetic variation. Chin Bull Bot, 1999, 16: 636-641 (in Chinese with English abstract).
[39] Connell J H. Diversity in tropical rain forests and coral reefs. Science, 1978, 199: 1302-1310.
doi: 10.1126/science.199.4335.1302 pmid: 17840770
[40] Sousa W P. The role of disturbance in natural communities. Annu Rev Ecol Syst, 1984, 15: 353-391.
[41] Wilkinson D M. The disturbing history of intermediate disturbance. Oikos, 1999, 84: 145-147.
[1] 梅飘, 刘丁丁, 叶圆圆, 张晨禹, 丁诗琦, 李亚奇, 王培鑫, 梅菊芬, 马春雷. 基于茶树液相功能芯片的白化茶树资源遗传多样性分析[J]. 作物学报, 2025, 51(9): 2358-2370.
[2] 王克晶, 李向华. 我国珍稀的大豆属多年生烟豆和短绒野大豆物种遗传资源濒危性评估分析[J]. 作物学报, 2025, 51(8): 2009-2019.
[3] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[4] 匡博文, 韦妳, 刘金典, 陈美燕, 毛兴洁, 段维兴, 杨细平. 基于甘蔗及其近缘属参考基因组开发SSR标记及数据库[J]. 作物学报, 2025, 51(1): 103-116.
[5] 郑栋, 周仙莉, 滕长才, 侯万伟, 张红岩, 刘玉皎. 基于SSR标记的青海蚕豆品种亲缘关系分析与指纹图谱构建[J]. 作物学报, 2025, 51(1): 79-90.
[6] 张红岩, 敏玉霞, 滕长才, 彭小星, 陈志凯, 周仙莉, 娄树宝, 刘玉皎. 利用130K液相芯片分析中国蚕豆种质资源遗传多样性[J]. 作物学报, 2024, 50(8): 1989-2000.
[7] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[8] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[9] 陈志凯, 周仙莉, 张红岩, 滕长才, 侯万伟. 320份蚕豆蛋白质含量的SSR关联分析[J]. 作物学报, 2024, 50(11): 2775-2786.
[10] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[11] 王倩, 张立媛, 许月, 李海, 刘少雄, 薛亚鹏, 陆平, 王瑞云, 刘敏轩. 黍稷高基元EST-SSR标记开发及200份核心种质资源遗传多样性分析[J]. 作物学报, 2023, 49(8): 2308-2318.
[12] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
[13] 李赢, 刘海翠, 石吕, 石晓旭, 韩笑, 刘建, 魏亚凤. 江苏裸大麦种质资源遗传多样性和群体结构分析[J]. 作物学报, 2023, 49(10): 2687-2697.
[14] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[15] 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!