欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (7): 1021-1031.doi: 10.3724/SP.J.1006.2018.01021

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析

谈欢1,刘玉汇1,*(),李丽霞1,王丽2,李元铭1,张俊莲1,*()   

  1. 1 甘肃省作物遗传改良与种质创新重点实验室 / 甘肃农业大学园艺学院 / 甘肃省干旱生境作物学重点实验室, 甘肃兰州 730070
    2 甘肃农业大学生命科学技术学院, 甘肃兰州 730070
  • 收稿日期:2017-10-27 接受日期:2018-03-26 出版日期:2018-07-10 网络出版日期:2018-04-09
  • 通讯作者: 刘玉汇,张俊莲
  • 基金资助:
    本研究由国家自然科学基金项目(31601356), 甘肃省杰出青年科学基金项目(17JR5RA138), 甘肃省农业生物技术研究与应用开发专项(GNSW-2015-15), 甘肃省高等学校科研项目(2016A-030)和甘肃农业大学“伏羲人才”计划项目(Gaufx-02Y04)资助

Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber

Huan TAN1,Yu-Hui LIU1,*(),Li-Xia LI1,Li WANG2,Yuan-Ming LI1,Jun-Lian ZHANG1,*()   

  1. 1 Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Enhancement / College of Horticulture / Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2017-10-27 Accepted:2018-03-26 Published:2018-07-10 Published online:2018-04-09
  • Contact: Yu-Hui LIU,Jun-Lian ZHANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31601356), Gansu Science Foundation for Distinguished Young Scholars (17JR5RA138), the Agricultural Biotechnology Research and Application Development Foundation of Gansu Province (GNSW-2015-15), Gansu Scientific Research Foundation for the Universities (2016A-030), and Fuxi Talent Project of Gansu Agricultural University (Gaufx-02Y04).

摘要:

植物花色素苷的合成代谢受转录因子的调控, 其中R2R3 MYB为最主要的转录调控因子。本研究以彩色四倍体马铃薯为试材, 克隆了R2R3 MYB基因家族里调控马铃薯块茎花色素苷合成R2R3 MYB-StAN1的3个同源基因, 并利用生物信息学分析、稳定烟草遗传转化、qPCR等方法对这3个同源基因的结构和功能进行分析和鉴定, 结果表明, 这3个同源基因均含有R2和R3保守结构域, 其主要差别在于C端由10个氨基酸序列组成的重复结构(R)数目不同, 根据R数目将其分别命名为StAN1-R0StAN1-R1StAN1-R3, 其蛋白分子量分别为28 047.91、29 458.35和31 527.60 Da, 等电点(pI)分别为6.14、6.90和8.39, 均为亲水蛋白。通过转化烟草发现, 转入StAN1-R0StAN1-R1StAN1-R3后, 烟草叶片叶色变化明显, 其中转StAN1-R1烟草叶色呈深红色, 其叶片花色素苷含量最高。进一步利用qPCR分析表明, 外源StAN1使烟草叶片花色素苷合成代谢途径的关键基因(NtCHS、NtCHI、NtF3H、NtF3’H、NtDFR、NtANS、NtUFGT)上调表达, 同时烟草内源NtbHLH基因的表达显著上升; StAN1-R1可以高效地调控烟草内源NtbHLH基因和结构基因NtDFRNtANS的表达。结果表明, StAN1的3个同源蛋白均可以调控花色素苷的合成, 而只含一个重复序列R的StAN1调控花色素苷合成的能力最强。

关键词: 马铃薯, 花色素苷, R2R3 MYB, 基因克隆, 生物信息学分析, 烟草转化, 基因表达分析

Abstract:

The anthocyanins biosynthesis is regulated by transcription factors, and R2R3 MYB is the most important transcriptional regulator in plant. In this study, three homologous genes were isolated from tetraploid potato, belonging to R2R3 MYB gene family. The structure and function analysis of the three homologous genes were characterized by bioinformatics analysis, stable tobacco genetic transformation and qPCR assays. The three homologous genes contained R2 and R3 conserved domains, differed in the number of repeats (R) consisting of 10 amino acid sequences, and named as StAN1-R0, StAN1-R1, and StAN1-R3 according to the number of R. The coding proteins are hydrophilic with molecular weight of 28 047.91, 29 458.35, 31 527.60 Da, and isoelectric points (pI) of 6.14, 6.90, and 8.39, respectively. The accumulation of anthocyanin was significantly increased in StAN1-R0, StAN1-R1 and StAN1-R3 overexpressed plants. The leaf color of StAN1-R1-overexpressed plants was dark red with the highest anthocyanin content among the three transgenic events. The qPCR assays showed that exogenous StAN1 genes enhanced the expression of endogenous NtbHLH transcription factor as well as NtCHS, NtCHI, NtF3H, NtF3’H, NtDFR, NtANS, and NtUFGT, involved in anthocyanin biosynthesis in transgenic tobacco leaves. The overexpression of StAN1-R1 resulted in higher expression of NtDFR, NtANS, and endogenous NtbHLH in transgenic tobacco. The results showed that three homologous genes of StAN1 can regulate anthocyanin biosynthesis, among them StAN1-R1 containing one R has the strongest regulatory capacity.

Key words: potato, anthocyanin, R2R3 MYB, gene cloning, bioinformatics analysis, stable tobacco transformation, gene expression analysis

表1

定量PCR分析的引物序列"

基因
Gene
登录号
Accession number
上游引物
Forward primer (5'-3')
下游引物
Reverse primer (5'-3')
StAN1 AY841129.1 GGCCACATATCAAGAGAGGTGACTTTG TCACATCGTTAGCTGTCCTTCCTGG
NtCHS AF311783.1 TTGTTCGAGCTTGTCTCTGC AGCCCAGGAACATCTTTGAG
NtCHI AB213651.1 GTCAGGCCATTGAAAAGCTC CTAATCGTCAATGCCCCAAC
NtF3H AB289450.1 CAAGGCATGTGTGGATATGG TGTGTCGTTTCAGTCCAAGG
NtF3'H AB289449.1 AGGCTCAACACTTCTCGT CATCAACTTTGGGCTTCT
NtDFR EF421429.1 AACCAACAGTCAGGGGAATG TTGGACATCGACAGTTCCAG
NtANS AB289447.1 TGGCGTTGAAGCTCATACTG GGAATTAGGCACACACTTTGC
NtUFGT FG627024.1 GAGTGCATTGGATGCCTTTT CCAGCTCCATTAGGTCCTTG
NtbHLH HQ589208.1/HQ589209.1 ATGKGCGCAAACGAGGTTGATAGC TRGCTGAGGTTGTTGTTGCTCA
NtEF-1α D63396.1 TGAACCATCCAKGACAGATTGG TGGGCTCCTTCTCAATCTCCTT

图1

总RNA的电泳图RS1:“甘农薯5号”红色薯皮; WS:“新大坪”白色薯皮; PS:“黑美人”紫色薯皮; RS2:“青薯9号”红色薯皮; WF1:“甘农薯5号”白色薯肉; WF:“新大坪”白色薯肉; PF:“黑美人”紫色薯肉; WF2:“青薯9号”白色薯肉; RFV:“青薯9号”红色维管束; M: DNA marker。"

图2

基因克隆过程的PCR产物电泳图RS1:“甘农薯5号”红色薯皮; WS:“新大坪”白色薯皮; PS:“黑美人”紫色薯皮; RS2:“青薯9号”红色薯皮; WF1:“甘农薯5号”白色薯肉; WF:“新大坪”白色薯肉; PF:“黑美人”紫色薯肉; WF2:“青薯9号”白色薯肉; RFV:“青薯9号”红色维管束; M: DNA marker。"

图3

序列比对图 R表示重复结构TIAPQPQEGI。"

表2

马铃薯StAN1基因编码蛋白质的一级结构预测"

基因
Gene
蛋白质分子式
Formula
分子量
Molecular weight (Da)
等电点
pI
不稳定系数
Instability index
平均疏水性
Average of hydropathicity
脂肪系数
Aliphatic index
StAN1-R0 C1227H1936N362O365S14 28047.91 8.39 46.97 -0.693 79.14
StAN1-R1 C1284H2019N377O390S15 29458.35 6.90 48.64 -0.720 74.88
StAN1-R3 C1371H2164N402O423S15 31527.60 6.14 50.76 -0.712 76.15

表3

StAN1基因编码蛋白质的二级结构分析"

基因
Gene
α-螺旋
Alpha helix
β-螺旋
Beta turn
无规则卷曲
Random coil
延伸链
Extended strand
StAN1-R0 34.84 9.84 40.57 14.75
StAN1-R1 35.27 8.91 42.25 13.57
StAN1-R3 28.06 7.55 47.84 16.55

图4

一些茄科植物与其他科属植物的R2R3 MYB氨基酸序列多重比对StAN1-R0_PSAK277, StAN1-R1_PSAK277, StAN1-R3_PSAK277: 马铃薯; AAF66727: 矮牵牛; AAA33482.1: 玉米; AAG42001.1-AAG42002.1: 拟南芥; ABB84753.1: 苹果; ABD72956.1: 葡萄; ABO26065.1: 智利番茄; ABX71488.1: 沙梨; ACI195261.1: 多毛番茄; ACN79541.1: 蒺藜苜蓿; ACO52470.1: 烟草; ADW94950.1: 矮牵牛; AFD31843.1: 马铃薯; AIP93873.1: 茄子; AMK01804.1: 茄子; BAF45114.1: 甘薯; NP_001311547.1: 辣椒; ABX71493.1: 甜樱桃; sp_O23892.1: 水稻。"

图5

StAN1基因与一些茄科和其他植物R2R3 MYB转录因子家族氨基酸序列的系统进化树分析"

图6

转StAN1基因烟草的表型分析a: 转StAN1基因烟草的整株; b: 转StAN1基因烟草的叶片。"

图7

转StAN1基因烟草的PCR鉴定M: DNA marker; CK: 未转基因烟草; R0、R1、R3分别为转StAN1-R0、StAN1-R1、StAN1-R3基因烟草。"

图8

转StAN1基因烟草与对照的花色素苷平均含量采用Duncan’s多重比较方法分析(P < 0.05, n = 3)。"

图9

转基因烟草中与花色素苷合成相关基因相对表达量采用Duncan’s多重比较方法分析(P < 0.05, n = 3)。"

[1] Jaakola L . New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci, 2013,18:477-483
徐春明, 庞高阳, 李婷 . 花青素的生理活性研究进展. 中国食品添加剂, 2013, ( 3):205-210
Xu C M, Pang G Y, Li T . Research progress on the physiological activities of anthocyanins. China Food Addit, 2013, ( 3):205-210 (in Chinese with English abstract)
[2] Tanaka Y, Sasaki N, Ohmiya A . Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J, 2008,54:733-749
doi: 10.1111/j.1365-313X.2008.03447.x pmid: 18476875
[3] 张学英, 张上隆, 骆军, 叶正文, 李世诚 . 果实花色素苷合成研究进展. 果树学报, 2004,21:456-460
Zhang X Y, Zhang S L, Luo J, Ye Z W, Li S C . Research progress on anthocyanin synthesis of fruits. J Fruit Sci, 2004,21:456-460 (in Chinese with English abstract)
[4] Chagné D, Wang K L, Espley R V, Volz R K, How N M, Rouse S, Brendolise C, Carlisle C M, Kumar S, De Silva N, Micheletti D, McGhie T, Crowhurst R N, Storey R D, Velasco R, Hellens R P, Gardiner S E, Allan A C . An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol, 2013,161:225-239
doi: 10.1104/pp.112.206771 pmid: 23096157
[5] Deluc L, Bogs J, Walker A R, Ferrier T, Decendit A, Merillon J M, Robinson S P, Barrieu F . The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol, 2008,147:2041-2053
doi: 10.1104/pp.108.118919
[6] Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimoto S, Ametani Y, Hirata Z, Sarai A, Ishii S, Nishimura Y . Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-Myb. Nat Struct Biol, 1995,2:309-320
doi: 10.1046/j.1365-2923.2001.00865.x pmid: 7796266
[7] Heisler M G, Atkinson A, Bylstra Y H, Walsh R, Smyth D R . SPATULA, a gene that controls development of carpel margin tissues in Aarbidopsis, encodes a bHLH protein. Development, 2001,128:1089-1098
doi: 10.1007/s004290100164 pmid: 11245574
[8] Boutorrent J, Roigvillanova I, Galstyan A, Martínezgarcía J F . PAR1 and PAR2 integrate shade and hormone transcriptional networks. Plant Signal Behav, 2008,3:453-454
doi: 10.4161/psb.3.7.5599 pmid: 19704482
[9] 李永杰, 谢让金, 邓烈 . R2R3MYB转录因子在果树花青素合成中的调控作用. 中国南方果树, 2014,43:1007-1431
Li Y J, Xie R J, Deng L . Regulation of R2R3MYB transcription factor in anthocyanin biosynthesis in fruit trees. South China Fruits, 2014,43:1007-1431 (in Chinese)
[10] 王延谦, 张波, 陈文杰, 刘登才, 刘宝龙, 张怀刚 . 小麦R2R3-MYB转录因子TaMYB3-4D的克隆及功能分析 . 西北植物学报, 2015, 35: 646-652
Wang Y Q, Zhang B, Chen W J, Liu D C, Liu B L, Zhang H G . Cloning and functional analysis of R2R3-MYB transcription factor TaMYB3-4D in wheat. Acta Bot Boreali-Occident Sin, 2015,35:646-652 (in Chinese with English abstract)
[11] 樊锦涛, 蒋琛茜, 邢继红, 董金皋 . 拟南芥R2R3-MYB家族22亚族的结构与功能. 遗传, 2014,36(10):1-10
doi: 10.3724/SP.J.1005.2014.0985
Fan J T, Jiang C Q, Xing J H, Dong J G . Structure and function of Arabidopsis R2R3-MYB family 22 subfamily. Hereditas, 2014,36(10):1-10 (in Chinese with English abstract)
doi: 10.3724/SP.J.1005.2014.0985
[12] 郭晋隆, 李国印, 苏亚春, 王恒波, 阙友雄, 徐景升, 许莉萍 . 甘蔗R2R3-MYB类似基因Sc2RMyb1的克隆及表达特性分析. 农业生物技术学报, 2012,20:1009-1017
doi: 10.3969/j.issn.1674-7968.2012.09.004
Guo J L, Li G Y, Su Y C, Wang H B, Que Y X, Xu J S, Xu L P . Cloning and expression analysis of R2R3-MYB like gene Sc2RMyb1 from sugarcane. Chin J Agric Biotechol, 2012,20:1009-1017 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2012.09.004
[13] Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C . Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J, 2007,49:414-427
doi: 10.1111/j.1365-313X.2006.02964.x pmid: 1865000
[14] Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T . Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol, 2007,48:958-970
doi: 10.1093/pcp/pcm066 pmid: 17526919
[15] Takos A M, Jaffe F W, Jacob S R, Bogs J, Robinson S P, Walker A R . Light induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol, 2006,142:1216-1232
doi: 10.1104/pp.106.088104 pmid: 17012405
[16] Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Ziosi V, Hellens R P, Costa G, Allan A C . Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol, 2013,13:68-81
doi: 10.1186/1471-2229-13-68 pmid: 3648406
[17] Bhargava A, Mansfield S D, Hall H C, Douglas C J, Ellis B E . MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol, 2010,154:1428-1438
doi: 10.1104/pp.110.162735 pmid: 20807862
[18] Böhner S, Gatz C . Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopenteny1 transferase as sensitive reporter genes. Mol Gen Genet, 2001,264:860-870
doi: 10.1007/s004380000376 pmid: 11254134
[19] Zuluaga D L, Gonzali S, Loreti E, Pucciariello C, Deg1’-Innocenti E, Guidi L, Alpi A, Perata P . Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol, 2008,35:606-618
doi: 10.1016/j.carres.2003.11.008
[20] Knight H, Trewavas A J, Knight M R . Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J, 1997,12 : 1067-1078
[21] 黄艳岚 . 马铃薯花青素转录激活基因的克隆与序列分析. 华南热带农业大学硕士学位论文, 广东广州, 2006
Huang Y L . Cloning and Sequence Analysis of Potato Anthocyanin Transcriptional Activated Genes. MS Thesis of South China Tropical Agricultural University, Guangzhou, China, 2006 ( in Chinese with English abstract)
[22] D’Amelia V, Aversano R, Batelli G, Caruso I, Castellano Moreno M, Castro-SanzA B, Chiaiese P, Fasano C, Palomba F, Carputo D . High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. Plant J, 2014 , 80:527-540
doi: 10.1111/tpj.12653 pmid: 25159050
[23] Hong Y, Tang X J, Huang H, Zhang Y, Dai S L . Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics, 2015,16:202
doi: 10.1186/s12864-015-1428-1 pmid: 4404602
[24] 武红霞, 马小卫, 王松标, 许文天, 罗纯, 姚全胜, 詹儒林, 高中山 . 不同生态条件杧果着色及花色苷合成相关基因表达比较. 果树学报, 2016,33:16-23
Wu H X, Ma X W, Wang S B, Xu W T, Luo C, Yao Q S, Zhan R L, Gao Z S . Comparison of gene expression related to anthocyanin coloring and anthocyanin biosynthesis in different ecological conditions. J Fruit Sci, 2016,33:16-23 (in Chinese with English abstract)
[25] 孟富宣, 周军, 辛培尧, 董娇, 徐世宏, 段淋渊 . 苹果花色素苷生物合成及调控的研究现状. 北方园艺, 2015, ( 7):180-187
doi: 10.11937/bfyy.201507050
Meng F X, Zhou J, Xin P Y, Dong J, Xu S H, Duan L Y . Research status of anthocyanin biosynthesis and regulation in apple. North Hortic, 2015, ( 7):180-187 (in Chinese with English abstract)
doi: 10.11937/bfyy.201507050
[26] D’Amelia V, Aversano R, Ruggiero A, Batelli G, Appelhagen I, Dinacci C, Hill L, Martin C, Carputo D . Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. Plant Cell Environ, 2017. doi: 10.1111/pce.12966
[27] Qin Y Z, Tai G, Xie K Y, He C Z, Xiong X Y . Ambient light aters gene expression pattern of enzymes and transcription factor involved in phenylpropanoid metabolic pathway in potato under chilling stress. Agric Sci Technol, 2014,15:1899-1904
[28] Jung C S, Griffiths H M, De Jong D M, Cheng S, Bodis M, Kim T S, De Jong W S . The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet, 2009,120:45-57
doi: 10.1007/s00122-009-1158-3
[29] Horsch R B, Fry J E, Hoffmann N L, Eichholtz D, Rogers S G, Fraley R T . A simple and general method for transferring genes into plants. Science, 1985,227:1229-1231
doi: 10.1126/science.227.4691.1229 pmid: 17757866
[30] Livaka K J, Schmittgen T D . Analysis of relative gene expression date using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262
[31] 邓素芳, 王天池, 赖钟雄 . pH示差法测定野生蕉果皮花青素含量. 中国南方果树, 2014,43(2):5-7
Deng S F, Wang T C, Lai Z X . pH differential method to determine the content of anthocyanin of wild banana. South China Fruits, 2014,43(2):5-7 (in Chinese with English abstract)
[32] 殷丽琴, 韦献雅, 钟成, 章明海, 郭世星, 牛应泽 . 不同品种彩色马铃薯总花色苷含量与总抗氧化活性. 食品科学, 2014,11(5):97
Yin L Q, Wei X Y, Zhong C, Zhang M H, Guo S X, Niu Y Z . Total anthocyanin content and total antioxidant activity of different varieties of color potato. Food Sci, 2014,11(5):97 (in Chinese with English abstract)
[33] Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D T, Bligny R, Maurel C . Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 2003,425:393-397
doi: 10.1038/nature01853 pmid: 14508488
[34] Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G . SnRK2 protein Kinases-Key regulators of plant response to abiotic stresses. OMICS, 2011,15:859-873
doi: 10.1089/omi.2011.0091 pmid: 3241737
[35] Kyte J, Doolittle R F . A simple method for displaying the hydropathic character of protein. J Mol Biol, 1982,157:105-132
doi: 10.1016/0022-2836(82)90515-0 pmid: 7108955
[36] 邢文, 金晓玲 . 调控植物类黄酮生物合成的MYB转录因子研究进展. 分子植物育种, 2015,13:689-696
Xing W, Jin X L . Research advances on MYB transcription regulators regulating plant flavanone biosynthesis. Mol Plant Breed, 2015,13:689-696 (in Chinese with English abstract)
[37] 段岩娇, 张鲁刚, 何琼, 张明科, 石姜超 . 紫心大白菜花青素积累特性及相关基因表达分析. 园艺学报, 2012,39:2159-2167
Duan Y J, Zhang L G, He Q, Zhang M K, Shi J C . Analysis of anthocyanin accumulation and related gene expression in chinese cabbage. Acta Hortic Sin, 2012,39:2159-2167 (in Chinese with English abstract)
[38] Hichri I, Heppel S C, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J . The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant, 2010,3:509-523
doi: 10.1093/mp/ssp118 pmid: 20118183
[39] Nesi N, Jond C, Debeaujon I, Lepiniec L . The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 2001,13:2099-2114
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[8] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[9] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[10] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[11] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[12] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[13] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[14] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[15] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!