作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2654-2662.doi: 10.3724/SP.J.1006.2022.11074
张潇文1(), 李世姣1, 张晓军2, 李欣2, 杨足君3, 张树伟2, 陈芳2, 常利芳2, 郭慧娟2, 畅志坚2,*(), 乔麟轶2,*()
ZHANG Xiao-Wen1(), LI Shi-Jiao1, ZHANG Xiao-Jun2, LI Xin2, YANG Zu-Jun3, ZHANG Shu-Wei2, CHEN Fang2, CHANG Li-Fang2, GUO Hui-Juan2, CHANG Zhi-Jian2,*(), QIAO Lin-Yi2,*()
摘要:
鉴定小麦耐盐种质对于充分利用盐碱地和保障粮食安全具有重要意义。CH7034是本实验室自育的1份小麦耐盐品系, 为了明确其耐盐性遗传规律和控制位点, 利用CH7034与盐敏感品种SY95-71的重组自交系群体进行QTL分析。基于SNP芯片数据和盐害指数(salt injury index), 在2A、2D、4B和5A染色体上共检测出6个QTL, 分别为QSI.sxau_2A、QSI.sxau_2D、QSI.sxau_4B.1、QSI.sxau_4B.2、QSI.sxau_5A.1和QSI.sxau_5A.2。其中, QSI.sxau_5A.1在3次盐胁迫试验中均能被检测到, 具有最高的表型变异解释率(15.73%~20.18%), 且不同于5AL染色体上已报道的其他耐盐位点。在QSI.sxau_5A.1区间开发并整合了7个SSR标记, 将LOD峰值进一步确定在SSR-D1处。基于转录组数据库, 从QSI.sxau_5A.1区段内筛选了12个响应盐胁迫的高置信基因。研究结果为CH7034耐盐位点的精细定位乃至克隆奠定了基础, 也为小麦耐盐品种选育提供了新种质和分子标记。
[1] | 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. p 650. |
The National Soil Survey Office. Soils of China. Beijing: China Agriculture Press, 1998. p 650. (in Chinese) | |
[2] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[3] |
Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011-1024.
doi: 10.1016/j.cj.2020.03.007 |
[4] |
Gorham J, Hardy C, Jones R, Joppa L R, Law C N. Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet, 1987, 74: 584-588.
doi: 10.1007/BF00288856 pmid: 24240213 |
[5] |
Dubcovsky J, María G S, Epstein E, Luo M C, Dvořák J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet, 1996, 92: 448-454.
doi: 10.1007/BF00223692 pmid: 24166270 |
[6] |
James R A, Davenport R J, Munns R. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol, 2006, 142: 1537-1547.
doi: 10.1104/pp.106.086538 |
[7] |
Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene. Nat Biotechnol, 2012, 30: 360-364.
doi: 10.1038/nbt.2120 pmid: 22407351 |
[8] |
Turki N, Shehzad T, Harrabi M, Okuno K. Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica, 2015, 201: 29-41.
doi: 10.1007/s10681-014-1164-7 |
[9] | 单雷, 赵双宜, 陈芳, 夏光敏. 小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位. 中国农业科学, 2006, 39: 225-230. |
Shan L, Zhao S Y, Chen F, Xia G M. Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No. 3. Sci Agric Sin, 2006, 39: 225-230. (in Chinese with English abstract) | |
[10] | 车婧. 山融3号小麦BC2代群体耐盐主效QTL相关分子标记的筛选定位. 山东农业大学硕士学位论文, 山东泰安, 2010. pp 39-41. |
Che J. The Major Salt-Relative QTL Located by Molecular Markers in Salt-Tolerance Introgression BC2 Population of SR3 with Jinan 177. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2010. pp 39-41 (in Chinese with English abstract) | |
[11] | Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg L H. Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica, 2019, 215: 103. |
[12] |
Asif M A, Garcia M, Tilbrook J, Brien C, Pearson A S. Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Funct Plant Biol, 2021, 48: 131-140.
doi: 10.1071/FP20167 |
[13] |
Ge R C, Chen G P, Zhao B C, Shen Y Z, Huang Z J. Cloning and functional characterization of a wheat serine/threonine kinase gene (TaSTK) related to salt-resistance. Plant Sci, 2007, 173: 55-60.
doi: 10.1016/j.plantsci.2007.04.005 |
[14] |
Liu S, Liu S, Wang M, Wei T, Meng C, Wang M, Xia G. A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell, 2014, 26: 164-180
doi: 10.1105/tpc.113.118687 |
[15] | 吕伟东, 徐鹏彬, 蒲训. 偃麦草属种质资源在普通小麦育种中的应用现状简介. 草业学报, 2007, 16(6): 136-140. |
Lyu W D, Xu P B, Pu X. Summary of situation for applying genetic resources from Elytrigia in Triticum aestivum breeding. Acta Pratac Sin, 2007, 16(6): 136-140. (in Chinese with English abstract) | |
[16] | 畅志坚, 赵怀生, 李生海. 小麦与天蓝偃麦草远缘杂交中结实性的研究. 山西农业科学, 1992, 20(2): 7-10. |
Chang Z J, Zhao H S, Li S H. Study on the fruitfulness of a distant cross between winter wheat and Agropyron glaucum. Shanxi Agric Sci, 1992, 20(2): 7-10. (in Chinese with English abstract) | |
[17] | 畅志坚. 几个小麦-偃麦草新种质的创制及分子细胞遗传学分析. 四川农业大学博士论文, 四川雅安, 1999. pp 23-26. |
Chang Z J. Creation and Creation and Molecular Cytogenetics Analysis of Several New Wheat-Thinopyrum Germplasm. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 1999. pp 23-26. (in Chinese with English abstract) | |
[18] |
Chang Z J, Zhang X J, Yang Z J, Zhan H X, Li X, Liu C, Zhang C Z. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Heredita, 2010, 147: 304-312.
doi: 10.1111/j.1601-5223.2010.02156.x |
[19] | 乔麟轶, 张潇文, 李世姣, 陈芳, 李欣, 郭慧娟, 张树伟, 常利芳, 张晓军, 畅志坚. 小偃麦渗入系苗期耐盐鉴定与分子标记评价. 山东农业科学, 2021, 53(5): 69-73. |
Qiao L Y, Zhang X W, Li S J, Chen F, Li X, Guo H J, Zhang S W, Chang L F, Zhang X J, Chang Z J. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat- Thinopyrum intermedium introgression lines. Shandong Agric Sci, 2021, 53(5): 69-73. (in Chinese with English abstract) | |
[20] | 张蕾, 侯雅静, 张晓军, 李欣, 乔麟轶, 畅志坚. 小偃麦渗入系耐盐性鉴定及其在F2群体中的遗传分析. 山西农业科学, 2016, 44: 281-283. |
Zhang L, Hou Y J, Zhang X J, Li X, Qiao L Y, Chang Z J. Identification and genetic analysis for salt-tolerance of wheat-Thinopyrum intermedium introgression line and its F2 population. Shanxi Agric Sci, 2016, 44: 281-283. (in Chinese with English abstract) | |
[21] | 舒焕麟, 杨足君, 李光蓉. 创新诱发材料SY95-71选育和利用价值研究. 四川农业大学学报, 1999, 17: 249-253. |
Shu H L, Yang Z J, Li G R. Selection and evaluation of a wheat line SY95-71 as new yellow rust spreader. J Sichuan Agric Univ, 1999, 17: 249-253. (in Chinese with English abstract) | |
[22] | Amirbakhtiar N, Ismaili A, Ghaffari M, Mansuri R M, Sanjari S, Shobbar Z. Transcriptome analysis of bread wheat leaves in response to salt stress. PLoS One, 2021, 16: e0254189. |
[23] | 乔麟轶. 小麦材料CH7034中抗白粉病和抗条锈病QTL定位. 山西大学博士学位论文, 山西太原, 2018. pp 31-32. |
Qiao L Y. Mapping of Resistance Loci to Powdery Mildew and Stripe Rust in Wheat Cultivar CH7034. PhD Dissertation of Shanxi University, Taiyuan, Shanxi, China, 2018. pp 31-32. (in Chinese with English abstract) | |
[24] | Chinpongpanich A, Limruengroj K, Phean-O-Pas S, Limpaseni T, Buaboocha T. Expression analysis of calmodulin and calmodulin- like genes from rice, Oryza sativa L. BMC Res Notes, 2012, 5: 625. |
[25] |
Kim B G, Waadt R, Yong H C, Pandey G K, Sheng L. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J, 2007, 52: 473-484.
doi: 10.1111/j.1365-313X.2007.03249.x |
[26] |
Tang R J, Liu H, Yang Y, Yang L, Gao X S, Garcia V J, Luan S, Zhang H X. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res, 2012, 22: 1650-1665.
doi: 10.1038/cr.2012.161 |
[27] |
Li P, Li Y J, Zhang F J, Zhang G Z, Jiang X Y, Yu H M, Hou B K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J, 2017, 89: 85-103.
doi: 10.1111/tpj.13324 |
[28] |
Zhao C Z, Wang X M, Wang X Y, Wu K L, Li P, Chang N, Wang J F, Wang F, Li J L, Bi Y R. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation. J Plant Physiol, 2015, 181: 83-95.
doi: 10.1016/j.jplph.2015.03.016 |
[29] |
Bhatia Y, Mishra S, Bisaria V S. Microbial-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol, 2002, 22: 375-407.
pmid: 12487426 |
[30] |
Lee J M, Kim Y R, Kim J K, Jeong G T, Ha J C, Kong I S. Characterization of salt-tolerant β-glucosidase with increased thermostability under high salinity conditions from Bacillus sp. SJ-10 isolated from jeotgal, a traditional Korean fermented seafood. Bioprocess Biosyst Eng, 2015, 38: 1335-1346.
doi: 10.1007/s00449-015-1375-x |
[31] |
Cai L N, Xu S N, Lu T, Lin D Q, Yao S J. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J Biotechnol, 2019, 292: 12-22.
doi: S0168-1656(19)30004-5 pmid: 30664896 |
[32] |
Dutta A, Sen J, Deswal R. New evidences about strictosidine synthase (Str) regulation by salinity, cold stress and nitric oxide in Catharanthus roseus. J Plant Biochem Biotechnol, 2013, 22: 124-131.
doi: 10.1007/s13562-012-0118-1 |
[33] |
Khan N A, Nazar R, Anjum N A. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic, 2009, 122: 455-460.
doi: 10.1016/j.scienta.2009.05.020 |
[34] |
Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ, 2012, 35: 1156-1170.
doi: 10.1111/j.1365-3040.2012.02480.x |
[35] | Wang X T, Zeng J, Li Y, Rong X L, Sun J T, Sun T, Li M, Wang L Z, Feng Y, Chai R H, Chen M J, Chang J L, Li K X, Yang G X, He G Y. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci, 2015, 6: 615. |
[36] | Li X, Tang Y, Zhou C, Zhang L, Lyu J. A wheat WRKY transcription factor TaWRKY46 enhances tolerance to osmotic stress in transgenic Arabidopsis plants. Int J Mol Sci, 2020, 21: 1321. |
[37] | Ye H, Qiao L Y, Guo H Y, Guo L P, Ren F, Bai J F, Wang Y K. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances. Front Plant Sci, 2021, 12: 663118. |
[1] | 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227. |
[2] | 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254. |
[3] | 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314. |
[4] | 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350. |
[5] | 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399. |
[6] | 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408. |
[7] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[8] | 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114. |
[9] | 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913. |
[10] | 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770. |
[11] | 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786. |
[12] | 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729. |
[13] | 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760. |
[14] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[15] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
|