欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2654-2662.doi: 10.3724/SP.J.1006.2022.11074

• 研究简报 • 上一篇    下一篇

小麦品系CH7034中耐盐QTL定位

张潇文1(), 李世姣1, 张晓军2, 李欣2, 杨足君3, 张树伟2, 陈芳2, 常利芳2, 郭慧娟2, 畅志坚2,*(), 乔麟轶2,*()   

  1. 1山西大学生命科学学院, 山西太原 030006
    2山西农业大学农学院 / 作物遗传与分子改良山西省重点实验室 / 省部共建有机旱作农业国家重点实验室(筹), 山西太原 030031
    3电子科技大学生命科学与技术学院, 四川成都 610054
  • 收稿日期:2021-08-22 接受日期:2022-01-06 出版日期:2022-10-12 网络出版日期:2022-02-24
  • 通讯作者: 畅志坚,乔麟轶
  • 作者简介:第一作者联系方式: E-mail: zxw18435139058@126.com
  • 基金资助:
    山西省回国留学人员科研资助项目(2021-070);山西农业大学博士科研启动项目(2021BQ39);山西农业大学省部共建有机旱作农业国家重点实验室自主研发项目(202002-3)

QTL mapping for salt tolerance in wheat line CH7034

ZHANG Xiao-Wen1(), LI Shi-Jiao1, ZHANG Xiao-Jun2, LI Xin2, YANG Zu-Jun3, ZHANG Shu-Wei2, CHEN Fang2, CHANG Li-Fang2, GUO Hui-Juan2, CHANG Zhi-Jian2,*(), QIAO Lin-Yi2,*()   

  1. 1College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
    2College of Agriculture, Shanxi Agricultural University / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement / State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Taiyuan 030031, Shanxi, China
    3College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
  • Received:2021-08-22 Accepted:2022-01-06 Published:2022-10-12 Published online:2022-02-24
  • Contact: CHANG Zhi-Jian,QIAO Lin-Yi
  • Supported by:
    Shanxi Scholarship Council of China(2021-070);Shanxi Agricultural University Research Project for Doctor(2021BQ39);State Key Laboratory of Sustainable Dryland Agriculture (in preparation) of Shanxi Agricultural University(202002-3)

摘要:

鉴定小麦耐盐种质对于充分利用盐碱地和保障粮食安全具有重要意义。CH7034是本实验室自育的1份小麦耐盐品系, 为了明确其耐盐性遗传规律和控制位点, 利用CH7034与盐敏感品种SY95-71的重组自交系群体进行QTL分析。基于SNP芯片数据和盐害指数(salt injury index), 在2A、2D、4B和5A染色体上共检测出6个QTL, 分别为QSI.sxau_2AQSI.sxau_2DQSI.sxau_4B.1QSI.sxau_4B.2QSI.sxau_5A.1QSI.sxau_5A.2。其中, QSI.sxau_5A.1在3次盐胁迫试验中均能被检测到, 具有最高的表型变异解释率(15.73%~20.18%), 且不同于5AL染色体上已报道的其他耐盐位点。在QSI.sxau_5A.1区间开发并整合了7个SSR标记, 将LOD峰值进一步确定在SSR-D1处。基于转录组数据库, 从QSI.sxau_5A.1区段内筛选了12个响应盐胁迫的高置信基因。研究结果为CH7034耐盐位点的精细定位乃至克隆奠定了基础, 也为小麦耐盐品种选育提供了新种质和分子标记。

关键词: 小麦, 盐胁迫, 盐害指数, SNP标记, QTL定位

Abstract:

The identification of wheat salt-tolerant germplasm is of great significance for making full use of saline land and ensuring food security. CH7034 is a wheat salt-tolerant line bred by our laboratory. In order to clarify the genetic rules and control loci for salt tolerance, QTL analysis was conducted using a recombinant inbred lines population crossed by CH7034 and salt-sensitive variety SY95-71. Based on the SNP microarray data and salt injury index, six QTL were detected on chromosomes 2A, 2D, 4B, and 5A, including QSI.sxau_2A, QSI.sxau_2D, QSI.sxau_4B.1, QSI.sxau_4B.2, QSI.sxau_5A.1, and QSI.sxau_5A.2. Among them, QSI.sxau_5A.1 was detected in all three salt stress experiments and had the highest phenotypic variance explained (15.73%-20.18%), which was different from other salt-tolerance loci reported on chromosome 5AL. Seven SSR markers were developed and integrated in the QSI.sxau_5A.1 interval, and the peak of LOD was further determined at SSR-D1. Based on the transcriptome database, 12 high-confidence genes in response to salt stress were screened from the QSI.sxau_5A.1 section. These results lay the foundation for the fine mapping and even cloning of the salt tolerance loci of CH7034, and provide new germplasm and molecular markers for the selection and breeding of wheat salt-tolerant varieties.

Key words: wheat, salt stress, salt injury index, SNP marker, QTL mapping

表1

本研究使用的SSR分子标记"

标记名称
Marker name
上游引物
Forward sequence (5'-3')
下游引物
Reverse sequence (5'-3')
产物长度
Product size (bp)
退火温度
Annealing
temperature (℃)
SSR-U7 GGTCATGTTGGAATGTTGATCAAG GCTTTTATGTTTCCAACTCTAGTCAA 127 58
SSR-D28 GGGAAATCCCAACGCCTG GAGTCATCATGAAAGAAAGCATAAAT 144 58
SSR-D5 GCCCACGTTTCCTCTTAATG TCATCGAACATGATGCACTATC 94 58
SSR-D1 GAGAATAAATCCACTCTCCATGC CGATATGTTCCTGTCTCCTTGT 180 58
SSR-D4 CCGTGTAGTAGAACACTGCATGT GCTCGAGCTGTAGCCCAG 193 54
SSR-U2 AAGCAGAATCATGGAAGGGAC CACTTATTCAAGTCATTAAGCATTCAAT 102 58
SSR-U5 CAGTATCCATCTTTGCCATTCAG CTCCTACCTCGACGACAC 116 58
cslinkNax2 TCTCCATCATTCAACATCAATCG TGTAGCTCGTCGGGGTGTGTTGC 170 58
Xgwm304 AGGAAACAGAAATATCGCGG AGGACTGTGGGGAATGAATG 176 58
Xbarc144 GCGTTTTAGGTGGACGACATAGATAGA GCGCCACGGGCATTTCTCATAC 191 58
Xwmc110 GCAGATGAGTTGAGTTGGATTG GTACTTGGAAACTGTGTTTGGG 127 58

图1

250 mmol L-1 NaCl胁迫处理7 d后的CH7034和SY95-71"

表2

CH7034和SY95-71受NaCl胁迫后的盐害指数"

材料
Material
总株数
Total number of plants
盐害级别及株数 Salt injury level and number of plants 盐害指数
Salt injury index (%)
0 1 2 3 4
CH7034-1 16 7 8 1 32.5
CH7034-2 16 8 6 2 32.5
CH7034-3 16 8 8 30.0
平均值 Mean 31.7
SY97-71-1 16 2 14 77.5
SY97-71-2 16 3 13 76.3
SY97-71-3 16 2 14 77.5
平均值 Mean 77.1

图2

CH7034×SY95-71 RIL群体盐害指数分布"

图3

CH7034/SY95-71 RIL群体的图谱长度"

表3

小麦CH7034/SY75-71 RIL群体苗期耐盐QTL定位"

试验编号
Test number
数量性状位点
QTL
染色体
Chr.
图谱位置
Position (cM)
标记区间
Marker region
LOD值
LOD score
表型变异解释率
PVE (%)
加性效应
Add.
SI-1 QSI.sxau_2D 2D 0 992489-992489 3.57 5.60 -2.42
QSI.sxau_4B.1 4B 112 1265612-3954524 6.38 10.50 -3.31
QSI.sxau_5A.1 5A 73 1049519-4911066 6.63 15.73 -3.81
SI-2 QSI.sxau_2A 2A 9 3532866-1090021 2.96 5.24 -2.71
QSI.sxau_4B.2 4B 43 1862515-1059340 3.41 6.36 -2.96
QSI.sxau_5A.1 5A 71 1049519-1215538 10.29 20.18 -5.49
SI-3 QSI.sxau_5A.1 5A 71 1049519-1215538 10.15 17.62 -4.50
QSI.sxau_5A.2 5A 116 1125437-1228444 4.27 15.73 -3.09

图4

QSI.sxau-5A.1的遗传定位图谱(a)、基因组图谱(b)和SSR标记加密LOD图谱(c) *表示标记位于LOD峰值下方。"

图5

QSI.sxau-5A和已报道耐盐基因/QTL的连锁标记在CH7034、SY75-71及其RIL群体家系中的扩增 a、b: QSI.sxau-5A的连锁标记SSR-U2和SSR-U5; c: TmHKT1:5-A的连锁标记cslinkNax2; d: 山融3号耐盐位点的连锁标记Xbarc144。 M: DNA指示带; CH: CH7034; SY: SY95-71; T1~T6: 携带QSI.sxau-5A.1的耐盐家系; S1~S6: 不携带QSI.sxau-5A.1的盐敏感家系。"

表4

小麦5AL染色体上已定位耐盐基因和QTL"

基因/QTL
Gene/QTL
参考文献
Reference
耐盐表型
Phenotype
来源
Source
连锁标记 Linkage marker
标记名称
Name
亲本多态性
Polymorphism
in parents
与表型连锁Linked to
phenotype
TmHKT1;5-A [6,7] 叶片K+/Na+
K+/Na+ ratio of leaf
Triticum durum cslinkNax2 + -
QTL-SR3 [9] 叶片盐害级别
Salt injury level of leaf
wheat Xgwm304 - -
QTL-SR3 [10] 叶片盐害级别
Salt injury level of leaf
wheat Xbarc144 + -
qNL5, qLL5 [8] 叶数, 叶长
Leaf number, leaf length
Triticum durum Xwmc110 - -
QHAI.5A-2 [11] 盐碱地收获指数
Harvest index in salt land
wheat wPt-3334
QG(1-5).asl-5A [12] 相对生长率
Relative growth rate (RGR) salt/RGR control
wheat TP14539

表5

基于转录组数据库筛选出的QSI.sxau-5A区段内盐胁迫响应基因"

差异表达基因
DEGs
基因组位置
Genomic location
差异倍数
log2 (Fold Change)
响应类别
Response type
编码蛋白注释
Protein-encoding annotation
TraesCS5A01G382800 580799964-580801653 1.71 上调
Upregulate
钙调素相关钙感应蛋白
Calmodulin-related calcium sensor protein
TraesCS5A01G382900 580803022-580805966 -1.44 下调
Downregulate
ATP硫酸化酶
ATP sulfurylase
TraesCS5A01G386500 584049719-584058870 -1.08 下调
Downregulate
肌球蛋白
Myosin protein
TraesCS5A01G388300 585018687-585021441 1.26 上调
Upregulate
β-葡萄糖苷酶前体
β-glucosidase precursor
TraesCS5A01G389000 585232865-585236702 1.26 上调
Upregulate
β-葡萄糖苷酶前体
β-glucosidase precursor
TraesCS5A01G390200 585488957-585491921 1.01 上调
Upregulate
胡豆苷合酶
Strictosidine synthase
TraesCS5A01G392100 588416260-588416877 4.68 上调
Upregulate

None
TraesCS5A01G393900 589311576-589313132 2.25 上调
Upregulate
UDP-葡萄糖基转移酶
UDP-glucosyl transferase
TraesCS5A01G394500 589584058-589585518 1.38 上调
Upregulate
UDP-葡萄糖基转移酶
UDP-glucosyl transferase
TraesCS5A01G394900 590540043-590541485 1.38 上调
Upregulate
UDP-葡萄糖6-磷酸脱氢酶
UDP-glucose 6-phosphatedehydrogenase
TraesCS5A01G397600 591976101-591977663 -1.85 下调
Downregulate
脂肪酶3类家族蛋白
Lipase class 3 family protein
TraesCS5A01G402600 595371952-595372493 -1.01 下调
Downregulate
细胞色素6f复合亚基
Cytochrome b6f complex subunit
[1] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. p 650.
The National Soil Survey Office. Soils of China. Beijing: China Agriculture Press, 1998. p 650. (in Chinese)
[2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[3] Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011-1024.
doi: 10.1016/j.cj.2020.03.007
[4] Gorham J, Hardy C, Jones R, Joppa L R, Law C N. Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet, 1987, 74: 584-588.
doi: 10.1007/BF00288856 pmid: 24240213
[5] Dubcovsky J, María G S, Epstein E, Luo M C, Dvořák J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet, 1996, 92: 448-454.
doi: 10.1007/BF00223692 pmid: 24166270
[6] James R A, Davenport R J, Munns R. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol, 2006, 142: 1537-1547.
doi: 10.1104/pp.106.086538
[7] Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene. Nat Biotechnol, 2012, 30: 360-364.
doi: 10.1038/nbt.2120 pmid: 22407351
[8] Turki N, Shehzad T, Harrabi M, Okuno K. Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica, 2015, 201: 29-41.
doi: 10.1007/s10681-014-1164-7
[9] 单雷, 赵双宜, 陈芳, 夏光敏. 小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位. 中国农业科学, 2006, 39: 225-230.
Shan L, Zhao S Y, Chen F, Xia G M. Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No. 3. Sci Agric Sin, 2006, 39: 225-230. (in Chinese with English abstract)
[10] 车婧. 山融3号小麦BC2代群体耐盐主效QTL相关分子标记的筛选定位. 山东农业大学硕士学位论文, 山东泰安, 2010. pp 39-41.
Che J. The Major Salt-Relative QTL Located by Molecular Markers in Salt-Tolerance Introgression BC2 Population of SR3 with Jinan 177. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2010. pp 39-41 (in Chinese with English abstract)
[11] Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg L H. Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica, 2019, 215: 103.
[12] Asif M A, Garcia M, Tilbrook J, Brien C, Pearson A S. Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Funct Plant Biol, 2021, 48: 131-140.
doi: 10.1071/FP20167
[13] Ge R C, Chen G P, Zhao B C, Shen Y Z, Huang Z J. Cloning and functional characterization of a wheat serine/threonine kinase gene (TaSTK) related to salt-resistance. Plant Sci, 2007, 173: 55-60.
doi: 10.1016/j.plantsci.2007.04.005
[14] Liu S, Liu S, Wang M, Wei T, Meng C, Wang M, Xia G. A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell, 2014, 26: 164-180
doi: 10.1105/tpc.113.118687
[15] 吕伟东, 徐鹏彬, 蒲训. 偃麦草属种质资源在普通小麦育种中的应用现状简介. 草业学报, 2007, 16(6): 136-140.
Lyu W D, Xu P B, Pu X. Summary of situation for applying genetic resources from Elytrigia in Triticum aestivum breeding. Acta Pratac Sin, 2007, 16(6): 136-140. (in Chinese with English abstract)
[16] 畅志坚, 赵怀生, 李生海. 小麦与天蓝偃麦草远缘杂交中结实性的研究. 山西农业科学, 1992, 20(2): 7-10.
Chang Z J, Zhao H S, Li S H. Study on the fruitfulness of a distant cross between winter wheat and Agropyron glaucum. Shanxi Agric Sci, 1992, 20(2): 7-10. (in Chinese with English abstract)
[17] 畅志坚. 几个小麦-偃麦草新种质的创制及分子细胞遗传学分析. 四川农业大学博士论文, 四川雅安, 1999. pp 23-26.
Chang Z J. Creation and Creation and Molecular Cytogenetics Analysis of Several New Wheat-Thinopyrum Germplasm. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 1999. pp 23-26. (in Chinese with English abstract)
[18] Chang Z J, Zhang X J, Yang Z J, Zhan H X, Li X, Liu C, Zhang C Z. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Heredita, 2010, 147: 304-312.
doi: 10.1111/j.1601-5223.2010.02156.x
[19] 乔麟轶, 张潇文, 李世姣, 陈芳, 李欣, 郭慧娟, 张树伟, 常利芳, 张晓军, 畅志坚. 小偃麦渗入系苗期耐盐鉴定与分子标记评价. 山东农业科学, 2021, 53(5): 69-73.
Qiao L Y, Zhang X W, Li S J, Chen F, Li X, Guo H J, Zhang S W, Chang L F, Zhang X J, Chang Z J. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat- Thinopyrum intermedium introgression lines. Shandong Agric Sci, 2021, 53(5): 69-73. (in Chinese with English abstract)
[20] 张蕾, 侯雅静, 张晓军, 李欣, 乔麟轶, 畅志坚. 小偃麦渗入系耐盐性鉴定及其在F2群体中的遗传分析. 山西农业科学, 2016, 44: 281-283.
Zhang L, Hou Y J, Zhang X J, Li X, Qiao L Y, Chang Z J. Identification and genetic analysis for salt-tolerance of wheat-Thinopyrum intermedium introgression line and its F2 population. Shanxi Agric Sci, 2016, 44: 281-283. (in Chinese with English abstract)
[21] 舒焕麟, 杨足君, 李光蓉. 创新诱发材料SY95-71选育和利用价值研究. 四川农业大学学报, 1999, 17: 249-253.
Shu H L, Yang Z J, Li G R. Selection and evaluation of a wheat line SY95-71 as new yellow rust spreader. J Sichuan Agric Univ, 1999, 17: 249-253. (in Chinese with English abstract)
[22] Amirbakhtiar N, Ismaili A, Ghaffari M, Mansuri R M, Sanjari S, Shobbar Z. Transcriptome analysis of bread wheat leaves in response to salt stress. PLoS One, 2021, 16: e0254189.
[23] 乔麟轶. 小麦材料CH7034中抗白粉病和抗条锈病QTL定位. 山西大学博士学位论文, 山西太原, 2018. pp 31-32.
Qiao L Y. Mapping of Resistance Loci to Powdery Mildew and Stripe Rust in Wheat Cultivar CH7034. PhD Dissertation of Shanxi University, Taiyuan, Shanxi, China, 2018. pp 31-32. (in Chinese with English abstract)
[24] Chinpongpanich A, Limruengroj K, Phean-O-Pas S, Limpaseni T, Buaboocha T. Expression analysis of calmodulin and calmodulin- like genes from rice, Oryza sativa L. BMC Res Notes, 2012, 5: 625.
[25] Kim B G, Waadt R, Yong H C, Pandey G K, Sheng L. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J, 2007, 52: 473-484.
doi: 10.1111/j.1365-313X.2007.03249.x
[26] Tang R J, Liu H, Yang Y, Yang L, Gao X S, Garcia V J, Luan S, Zhang H X. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res, 2012, 22: 1650-1665.
doi: 10.1038/cr.2012.161
[27] Li P, Li Y J, Zhang F J, Zhang G Z, Jiang X Y, Yu H M, Hou B K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J, 2017, 89: 85-103.
doi: 10.1111/tpj.13324
[28] Zhao C Z, Wang X M, Wang X Y, Wu K L, Li P, Chang N, Wang J F, Wang F, Li J L, Bi Y R. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation. J Plant Physiol, 2015, 181: 83-95.
doi: 10.1016/j.jplph.2015.03.016
[29] Bhatia Y, Mishra S, Bisaria V S. Microbial-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol, 2002, 22: 375-407.
pmid: 12487426
[30] Lee J M, Kim Y R, Kim J K, Jeong G T, Ha J C, Kong I S. Characterization of salt-tolerant β-glucosidase with increased thermostability under high salinity conditions from Bacillus sp. SJ-10 isolated from jeotgal, a traditional Korean fermented seafood. Bioprocess Biosyst Eng, 2015, 38: 1335-1346.
doi: 10.1007/s00449-015-1375-x
[31] Cai L N, Xu S N, Lu T, Lin D Q, Yao S J. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J Biotechnol, 2019, 292: 12-22.
doi: S0168-1656(19)30004-5 pmid: 30664896
[32] Dutta A, Sen J, Deswal R. New evidences about strictosidine synthase (Str) regulation by salinity, cold stress and nitric oxide in Catharanthus roseus. J Plant Biochem Biotechnol, 2013, 22: 124-131.
doi: 10.1007/s13562-012-0118-1
[33] Khan N A, Nazar R, Anjum N A. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic, 2009, 122: 455-460.
doi: 10.1016/j.scienta.2009.05.020
[34] Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ, 2012, 35: 1156-1170.
doi: 10.1111/j.1365-3040.2012.02480.x
[35] Wang X T, Zeng J, Li Y, Rong X L, Sun J T, Sun T, Li M, Wang L Z, Feng Y, Chai R H, Chen M J, Chang J L, Li K X, Yang G X, He G Y. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci, 2015, 6: 615.
[36] Li X, Tang Y, Zhou C, Zhang L, Lyu J. A wheat WRKY transcription factor TaWRKY46 enhances tolerance to osmotic stress in transgenic Arabidopsis plants. Int J Mol Sci, 2020, 21: 1321.
[37] Ye H, Qiao L Y, Guo H Y, Guo L P, Ren F, Bai J F, Wang Y K. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances. Front Plant Sci, 2021, 12: 663118.
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[4] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[5] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[6] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[7] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[8] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[9] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[10] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[11] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[12] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[13] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[14] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[15] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[2] 陈光尧;王国槐;罗峰;聂明建. 甘蓝型油菜成熟角果内源激素对带壳种子发芽的影响[J]. 作物学报, 2007, 33(08): 1324 -1328 .
[3] 王润奇;高俊华;关中波;毛丽萍. 谷子几种农艺性状基因染色体定位及连锁关系的初步研究[J]. 作物学报, 2007, 33(01): 9 -14 .
[4] 叶俊;吴建国;杜婧;郑希;石春海. 水稻“9311”突变体的筛选和突变体库的构建[J]. 作物学报, 2006, 32(10): 1525 -1529 .
[5] 刘建卫;吴显荣. 我国主要高粱品种含氰势(HCN-P)的分析[J]. 作物学报, 1986, 12(02): 143 -144 .
[6] 刘仲齐;李有春. 提型杂种小麦粒重优势的研究[J]. 作物学报, 1995, 21(01): 57 -63 .
[7] 刘怀攀;纪秀娥;史留功;李潮海. 渗透胁迫对玉米幼苗叶片不同形态多胺含量的影响[J]. 作物学报, 2006, 32(10): 1430 -1436 .
[8] 赵晓彦;王晓鸣;王述民. 普通菜豆抗炭疽病基因SCAR标记鉴定[J]. 作物学报, 2007, 33(11): 1815 -1821 .
[9] 岳鸿伟;谭维娜;姜东;戴廷波;荆奇;曹卫星. 花后干旱和渍水对小麦籽粒HMW-GS及GMP含量的影响[J]. 作物学报, 2007, 33(11): 1845 -1849 .
[10] 范玉顶;李斯深;孙海艳;李瑞军. HMW-GS与北方手工馒头加工品质关系的研究[J]. 作物学报, 2005, 31(01): 97 -101 .