欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2663-2670.doi: 10.3724/SP.J.1006.2022.11084

• 研究简报 • 上一篇    下一篇

水分和腐植酸对燕麦籽粒产量和β-葡聚糖含量的协同提升效应

李英浩(), 王琦(), 赵宝平(), 柳妍娣, 米俊珍, 武俊英, 刘景辉   

  1. 内蒙古农业大学农学院 / 内蒙古自治区杂粮工程技术研究中心, 内蒙古呼和浩特 010019
  • 收稿日期:2021-09-23 接受日期:2022-01-06 出版日期:2022-10-12 网络出版日期:2022-07-20
  • 通讯作者: 赵宝平
  • 作者简介:第一作者联系方式: 李英浩, E-mail: 2466528827@qq.com;
    王琦, E-mail: 512774967@qq.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(31560373);国家自然科学基金项目(31960378);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-07);国家重点研发计划国际合作重点专项(2018YFE0107900)

Synergistic effect of moisture and foliar-applied humic acid on oat grain yield and β-glucan content

LI Ying-Hao(), WANG Qi(), ZHAO Bao-Ping(), LIU Yan-Di, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui   

  1. Agricultural College, Inner Mongolia Agricultural University / Inner Mongolia Coarse Grain Engineering Research Center, Hohhot 010019, Inner Mongolia, China
  • Received:2021-09-23 Accepted:2022-01-06 Published:2022-10-12 Published online:2022-07-20
  • Contact: ZHAO Bao-Ping
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31560373);National Natural Science Foundation of China(31960378);China Agriculture Research System of MOF and MARA(CARS-07);International Cooperation Key Special Project of the National Key Research and Development Program(2018YFE0107900)

摘要:

为明确水分和腐植酸协同作用对燕麦的增产提质效应, 本试验以蒙农大燕1号和内燕5号燕麦品种为研究对象, 分别设置旱作和有限灌溉2个水分处理, 分析喷施腐植酸对燕麦叶片光合特性、籽粒产量和β-葡聚糖含量的影响。结果表明: 孕穗和开花期喷施腐植酸后可以显著提高燕麦叶片的光合特性, 与灌水条件下相比, 蒙农大燕1号叶片的光合速率在旱作条件下的提高幅度更大, 提高了31.78%~123.72%, 而内燕5号在旱作和灌水条件下增幅基本一致; 在旱作条件下喷施腐植酸后两品种籽粒产量和β-葡聚糖含量均显著提高, 尤其以内燕5号的提高幅度更大, 分别提高了5.60%~74.68%和11.24%~19.56%; 与旱作处理相比, 在灌水条件下喷施HA, 两品种籽粒β-葡聚糖含量提高幅度更大, 分别提高了11.30%~33.29%和7.76%~43.81%。通过各指标之间的相关性分析, 蒙农大燕1号品种叶片的光合速率与籽粒β-葡聚糖含量、穗长、单穗小穗数、单穗粒重、千粒重及籽粒产量呈显著正相关关系, 籽粒产量与穗长、单穗小穗数、单穗粒重、千粒重呈显著正相关关系, 籽粒β-葡聚糖与单穗小穗数、千粒重和籽粒产量呈显著正相关关系(P<0.05), 而内燕5号品种籽粒β-葡聚糖含量与各产量构成因子正相关, 但未达到显著水平。综上说明, 水分和腐植酸协同作用可有效改善燕麦叶片的光合性能, 并且协同提高籽粒产量和β-葡聚糖含量。

关键词: 水分, 腐植酸, 燕麦, 产量, β-葡聚糖

Abstract:

In order to clarify the synergistic effect of water and humic acid on the yield and quality improvement of oats, we set two water treatments of dry farming and limited irrigation, respectively, and analyzed the effects of humic acid spraying on photosynthetic characteristics of oat leaves, grain yield, and β-glucan content using the oat varieties Mengnong Dayan 1 and Neiyan 5 as the research materials. The results showed that the application of humic acid at the booting and flowering stages could significantly improve the photosynthetic characteristics of oat leaves. Compared with irrigation, the photosynthetic rate of Mengnong Dayan 1 leaves increased by 31.78%-123.72% in dry farming, while the increased rate of Neiyan 5 leaves was basically the same as that in dry farming and irrigation. The grain yield and β-glucan content of the two varieties were significantly increased by spraying humic acid in dry farming, especially Neiyan 5, which increased by 5.60%-74.68% and 11.24%-19.56%, respectively. Compared with dry treatment, the content of β-glucan increased by 11.30%-33.29% and 7.76%-43.81%, respectively, when HA was sprayed under irrigation. Through the analysis of the correlation between the indexes, the photosynthetic rate, β-glucan content, spike height, spikelet number per spike, grain weight per plant, thousand-grain weight, and grain yield were significantly positive correlation of Mengnong Dayan 1, the grain yield, spike height, spikelet number per spike, grain weight per plant, and thousand-grain weight were significantly positive correlation, and there was a significant positive correlation between β-glucan content, spikelet number per spike, thousand-grain weight, and grain yield (P < 0.05). While there was a positive correlation between β-glucan content and grain yield components of Neiyan 5, but it did not reach a significant level. In conclusion, the synergistic effect of water and humic acid can effectively improve the photosynthetic performance of oat leaves, and synergistically increase grain yield and β-glucan content.

Key words: water, humic acid, oat, yield, β-glucan

图1

燕麦生育期内各月份降水量分布图"

表1

不同水分和喷施腐植酸处理下燕麦抽穗期叶片光合参数"

年份
Year
品种
Variety
水分
Water
处理
Treatment
胞间CO2浓度
Ci
(mmol mol-1)
光合速率
Pn
(μmol m-2 s-1)
气孔导度
Gs
(mmol mol-1)
蒸腾速率
Tr
(mmol m-2 s-1)
2019 蒙农大燕1号
Mengnong Dayan 1
DS HA 298.0±12.9 a 13.2±1.5 c 170.2±24.3 d 5.2±0.1 c
WT 248.6±40.7 b 5.9±0.7 f 79.2±30.2 e 3.1±0.8 e
WW HA 277.8±34.2 ab 22.5±0.2 a 592.4±39.9 a 8.3±0.7 a
WT 237.8±22.1 b 19.5±1.3 b 588.8±15.6 a 7.0±0.2 b
内燕5号
Neiyan 5
DS HA 278.9±36.9 ab 10.4±0.2 d 174.7±35.1 d 4.7±0.7 cd
WT 271.2±31.0 ab 7.7±0.2 e 138.1±18.2 d 3.7±0.3 de
WW HA 265.2±15.2 ab 21.7±0.4 a 419.9±28.4 b 7.8±1.0 ab
WT 260.8±10.0 ab 21.6±0.7 a 365.8±29.4 c 7.5±0.7 ab
2020 蒙农大燕1号
Mengnong Dayan 1
DS HA 266.0±25.5 a 14.1±1.6 bc 164.7±19.3 c 5.3±0.6 ab
WT 193.3±32.5 c 10.7±0.8 c 143.0±11.5 c 3.7±0.2 bc
WW HA 268.0±27.2 a 25.9±4.0 a 405.7±22.1 a 7.3±0.9 a
WT 199.5±14.5 c 20.5±2.1 ab 359.0±17.3 a 5.6±0.4 ab
内燕5号
Neiyan 5
DS HA 256.3±37.2 ab 12.0±2.1 c 167.7±6.7 c 3.5±0.7 bc
WT 227.3±14.2 abc 11.6±1.7 c 121.3±7.6 c 1.8±0.1 c
WW HA 254.3±34.5 ab 23.4±2.2 a 369.7±21.4 a 6.2±0.7 ab
WT 210.3±14.6 bc 19.1±1.8 ab 247.7±35.6 b 5.8±0.1 ab
水分 Water (W) ns *** *** ***
喷施 Spray (S) *** *** *** ***
W×S ns ns ns *

图2

不同水分和喷施腐植酸处理下燕麦叶片叶绿素SPAD值 DS: 旱作; WW: 灌水; HA: 腐植酸; WT: 清水。图中不同字母表示差异显著(P < 0.05)。"

图3

不同水分和喷施腐植酸处理下燕麦籽粒β-葡聚糖含量的变化 DS: 旱作; WW: 灌水; HA: 腐植酸; WT: 清水。"

表2

不同水分和喷施腐植酸处理下燕麦产量构成因素的变化"

年份
Year
品种
Variety
水分
Water
处理
Treatment
单位面积穗数
Panicle number
(×104 hm-2)
穗长
Panicle height
(cm)
单穗小穗数
Spikelet number
per spike
单穗粒重
Grain weight per
plant (g)
千粒重
1000-kernel weight (g)
2019 蒙农大燕1号
Mengnong Dayan 1
DS HA 200.7±11.4 cde 18.3±3.5 ab 23.9±6.5 bcd 0.98±0.10 ab 21.6±0.7 c
WT 184.2±12.4 e 16.1±3.7 ab 21.5±3.4 bcd 0.85±0.13 ab 20.2±0.5 de
WW HA 246.8±6.3 a 20.7±5.3 a 38.7±3.4 a 1.59±0.07 a 25.9±1.2 a
WT 225.7±28.0 abc 17.9±1.5 ab 30.6±2.4 ab 1.02±0.07 ab 24.8±0.3 ab
内燕5号
Neiyan 5
DS HA 197.0±7.5 de 14.6±3.5 b 18.8±3.6 cd 0.62±0.09 b 20.6±0.3 cd
WT 179.3±21.1 e 14.1±3.0 b 13.6±2.3 d 0.62±0.09 b 19.3±0.2 e
WW HA 237.3±6.7 ab 17.5±1.3 ab 30.3±12.9 ab 1.37±0.07 ab 24.8±1.2 ab
WT 213.0±15.3 bcd 17.1±1.0 ab 28.7±5.3 abc 1.05±0.07 ab 24.2±0.9 b
2020 蒙农大燕1号
Mengnong Dayan 1
DS HA 196.7±19.3 b 19.7±1.9 d 33.8±2.1 ab 1.58±0.05 ab 20.9±0.7 b
WT 184.0±13.1 b 17.2±1.2 d 29.7±3.5 bc 1.24±0.09 ab 19.7±1.5 b
WW HA 258.7±19.0 a 44.2±3.7 a 43.4±6.5 a 2.38±0.10 a 25.1±0.6 a
WT 254.7±4.6 a 39.9±5.4 ab 42.5±7.7 a 2.27±0.14 ab 24.1±1.7 a
内燕
5号
Neiyan 5
DS HA 190.3±7.5 b 18.3±2.5 d 24.8±3.3 c 1.29±0.10 ab 19.9±1.7 b
WT 181.0±18.2 b 17.7±1.8 d 23.1±0.9 c 1.05±0.08 b 19.6±1.3 b
WW HA 246.3±22.5 a 34.8±3.3 bc 44.2±3.7 a 2.04±0.09 ab 25.1±0.3 a
WT 245.3±27.0 a 33.1±0.9 c 39.9±5.4 a 1.86±0.13 ab 23.7±1.8 a

图4

不同水分和喷施腐植酸处理下燕麦籽粒产量的变化 DS: 旱作; WW: 灌水; HA: 腐植酸; WT: 清水。图中不同字母表示差异显著(P < 0.05)。"

图5

各指标之间的相关性分析 A: 蒙农大燕1号; B: 内燕5号。"

[1] 任长忠, 崔林, 何峰, 欧阳韶晖, 胡新中, 李再贵, 陕方. 我国燕麦荞麦产业技术体系建设与发展. 吉林农业大学学报, 2018, 40: 524-532.
Ren C Z, Cui L, He F, Ou-Yang S H, Hu X Z, Li Z G, Shan F. Construction and development of China oat and buckwheat industrial technology system. J Jilin Agric Univ, 2018, 40: 524-532. (in Chinese with English abstract)
[2] Wood P J. Cereal beta-glucans in diet and health. J Cereal Sci, 2007, 45: 230-238.
[3] Nazare J-A, Normand S, Triantafyllou A O, Desage M, Laville M. Modulation of the postprandial phase by β-glucan in overweight subjects: effects on glucose and insulin kinetics. Mol Nutr Food Res, 2009, 53: 361-369.
doi: 10.1002/mnfr.200800023
[4] Marshall A, Cowan S, Edwards S, Griffiths I, Howarth C, Langdon T, White E. Crops that feed the world 9. Oats-a cereal crop for human and livestock feed with industrial applications. Food Secur, 2013, 5: 13-33.
doi: 10.1007/s12571-012-0232-x
[5] Bodner G, Nakhforoosh A, Kaul H P. Management of crop water under drought: a review. Agron Sustain Dev, 2015, 35: 401-442.
doi: 10.1007/s13593-015-0283-4
[6] Kadam N N, Xiao G, Melgar R J. Chapter 3: agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv Agron, 2014, 127: 111-156.
[7] 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013.
Ren C Z, Hu Y G. Chinese Oatology. Beijing: China Agriculture Press, 2013 (in Chinese)
[8] Liu D Q, Wan F, Guo R, Li F M, Cao H H, Sun G J. GIS-based modeling of potential yield distributions for different oat varieties in China. Math Comput Mod, 2011, 54: 869.
[9] 苏日娜. 中国燕麦产业发展研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2013.
Su R N. Research on the Development of China’s Oat Industry. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2013. (in Chinese with English abstract)
[10] Humphreys D G, Mather D E. Heritability of β-glucan, groat- percentage, and crown rust resistance in two oat crosses. Euphytica, 1996, 91: 359-364.
doi: 10.1007/BF00033098
[11] Doehlert D C, McMullen M S, Hammond J J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci, 2001, 41: 1066-1072.
doi: 10.2135/cropsci2001.4141066x
[12] Brunner B R, Freed R D. Oat grain β-glucan content as affected by nitrogen level, location and year. Crop Sci, 1994, 34: 473-476.
doi: 10.2135/cropsci1994.0011183X003400020031x
[13] Peterson D M, Wesenberg D M, Burrup D E. β-glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop Sci, 1995, 35: 965-970.
doi: 10.2135/cropsci1995.0011183X003500040005x
[14] Guler M. Nitrogen and irrigation effects on grain beta-glucan content of oats (Avena sativa L.). Austr J Crop Sci, 2011, 5: 239-244.
[15] Chernyshova A A, White P J, Scott M P. Selection for nutritional function and agronomic performance in oat. Crop Sci, 2007, 47: 2330-2339.
doi: 10.2135/cropsci2006.12.0759
[16] Cervantes-Martinez C T, Frey K J, White P J. Correlated responses to selection for greater β-glucan content in two oat populations. Crop Sci, 2002, 42: 730-738.
[17] 程亮, 张保林, 王杰, 史亚龙, 陈可可. 腐植酸肥料的研究进展. 中国土壤与肥料, 2011, (5): 1-6.
Cheng L, Zhang B L, Wang J, Shi Y L, Chen K K. Research progress of humic acid fertilizers. Soils Fert China, 2011, (5): 1-6. (in Chinese with English abstract)
[18] Lotfi R, Kalaji H M, Valizadeh G R, Khalilvand Behrozyar E, Hemati A, Gharavi-Kochebagh P, Ghassemi A. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica, 2018, 56: 962-970.
doi: 10.1007/s11099-017-0745-9
[19] 刘伟, 刘景辉, 萨如拉. 腐植酸水溶肥料对燕麦叶片保护酶活性和渗透物质的影响. 灌溉排水学报, 2014, 33(1): 107-109.
Liu W, Liu J H, Sarula. Effects of humic acid water-soluble fertilizers on protective enzyme activities and osmotic substances in oat leaves. J Irrig Drain, 2014, 33(1): 107-109. (in Chinese with English abstract)
[20] Robredo A, Pérez-lópez U, Lacuesta M, Mena-Petite A, Munoz- Rueda A. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant, 2010, 54: 285-292.
doi: 10.1007/s10535-010-0050-y
[21] Liu B H, Liang J, Tang G M, Wang X F, Liu F C, Zhao D C. Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Sci Hortic, 2019, 250: 230-235.
doi: 10.1016/j.scienta.2019.02.056
[22] Janani P, Kumar N, Jegadeeswari V. Dynamics of gas exchange and chlorophyll fluorescence parameters of cocoa genotypes in response to water deficit. J Pharm Phytochem, 2019, 8: 415-419.
[23] Farooq M, Wahid A, Kobayashi N. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009, 29: 185-212.
doi: 10.1051/agro:2008021
[24] 邓万和, 王强, 吕耀昌, 周素梅. 品种和环境效应对燕麦β-葡聚糖含量的影响. 中国粮油学报, 2005, 20(2): 30-32.
Deng W H, Wang Q, Lyu Y C, Zhou S M. Effects of variety and environmental effects on the content of oat β-glucan. J Chin Cereals Oils Assoc, 2005, 20(2): 30-32. (in Chinese with English abstract)
[25] 王冰, 朱莉, 李茂玮, 詹晓北. 适应性驯化生产低分子质量β-葡聚糖及其抗氧化活性研究. 食品与发酵工业, 2021, 47(17): 27-33.
Wang B, Zhu L, Li M W, Zhan X B. Adaptive domestication to produce low molecular weight β-glucan and its antioxidant activity. Food Ferment Ind Sin, 2021, 47(17): 27-33. (in Chinese with English abstract)
[26] 张俊峰, 段娜, 刘兵兵, 刘龙龙, 赵文千. 灌浆期干旱胁迫对燕麦籽粒β-葡聚糖含量的影响. 山西农业科学, 2020, 48: 884-888.
Zhang J F, Duan N, Liu B B, Liu L L, Zhao W Q. Effects of drought stress during grain filling period on β-glucan content in oat grains. Shanxi Agric Sci, 2020, 48: 884-888. (in Chinese with English abstract)
[27] Zhang X, Huang G, Bian X, Zhao Q G. Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize, and the quantity of microorganisms and activity of enzymes in the rhizosphere. Plant Soil, 2013, 368: 407-417.
doi: 10.1007/s11104-012-1528-5
[28] 韩文元. 水分与腐植酸对燕麦抗旱性、产量形成和品质的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2016.
Han W Y. Effects of Moisture and Humic Acid on Drought Resistance, Yield Formation and Quality of Oats. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2016. (in Chinese with English abstract)
[29] 孙雯. 水分和腐植酸对燕麦光合、糖代谢及产量和β-葡聚糖形成的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2018.
Sun W. Effects of Water and Humic Acid on Oat Photosynthesis, Sugar Metabolism, Yield and β-glucan Formation. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract)
[30] Dong C C, Yong I J, Nam J H, Chung G C, Ji H C, Su J K, Hong S Y. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Res, 2018, 215: 156-162.
doi: 10.1016/j.fcr.2017.10.008
[31] Moghadam H R T, Khamene M K, Zahedi H. Effect of humic acid foliar application on growth and quantity of corn in irrigation withholding at different growth stages. Maydica, 2014, 59: 125-129.
[32] Hartz T K, Bottoms T G. Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. Hortic Sci, 2010, 45: 906-910.
[33] Ahmad W, Shah Z, Khan F, Ali S, Malik W. Maize yield and soil properties as influenced by integrated use of organic, inorganic and bio-fertilizers in a low fertility soil. Soil Environ, 2013, 32: 121-129.
[34] 李英浩, 刘景辉, 朱珊珊. 干旱胁迫下腐植酸对燕麦叶片光合性能的调控效应. 麦类作物学报, 2019, 39: 1385-1391.
Li Y H, Liu J H, Zhu S S. Regulation effects of humic acid on photosynthetic performance of oat leaves under drought stress. J Triticeae Crops, 2019, 39: 1385-1391. (in Chinese with English abstract)
[1] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[2] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[3] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[4] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[5] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[6] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[7] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[8] 赵影星, 王彪, 刘晴, 宋彤, 张学鹏, 陈源泉, 隋鹏. 黑龙港平原基于麦-玉复种的两年轮作模式农田水分消耗特征研究[J]. 作物学报, 2022, 48(7): 1787-1779.
[9] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[10] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[11] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[12] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[13] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[14] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[15] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] . 小麦穗和芒表面积的估测[J]. 作物学报, 1985, 11(02): 138 .
[4] 彭泽斌;田志国;刘新芝. 改良HS相互轮回选择法对两个玉米群体的改良[J]. 作物学报, 2004, 30(12): 1204 -1209 .
[5] 王余龙;姚友礼;徐家宽;李昙云;蒋军民;蔡建中. 稻穗不同部位籽粒的结实能力[J]. 作物学报, 1995, 21(01): 29 -38 .
[6] 李春燕;封超年;王亚雷;张容;郭文善;朱新开;彭永欣. 不同小麦品种支链淀粉链长分配及其与淀粉理化特性的关系[J]. 作物学报, 2007, 33(08): 1240 -1245 .
[7] 张永平;王志敏;黄琴;谢岷. 不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响[J]. 作物学报, 2008, 34(07): 1213 -1219 .
[8] 熊飞;王忠;朱方莉;张志恒. 不同类型玉米颖果主要品质性状比较[J]. 作物学报, 2005, 31(02): 259 -261 .
[9] 夏九成;杨克诚;张怀渝. 控制双亲的混合选择对热带玉米群体墨白964的改良效应[J]. 作物学报, 2004, 30(10): 980 -989 .
[10] 林忠辉;莫兴国;项月琴. 作物生长模型研究综述[J]. 作物学报, 2003, 29(05): 750 -758 .