作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2663-2670.doi: 10.3724/SP.J.1006.2022.11084
李英浩(), 王琦(), 赵宝平(), 柳妍娣, 米俊珍, 武俊英, 刘景辉
LI Ying-Hao(), WANG Qi(), ZHAO Bao-Ping(), LIU Yan-Di, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui
摘要:
为明确水分和腐植酸协同作用对燕麦的增产提质效应, 本试验以蒙农大燕1号和内燕5号燕麦品种为研究对象, 分别设置旱作和有限灌溉2个水分处理, 分析喷施腐植酸对燕麦叶片光合特性、籽粒产量和β-葡聚糖含量的影响。结果表明: 孕穗和开花期喷施腐植酸后可以显著提高燕麦叶片的光合特性, 与灌水条件下相比, 蒙农大燕1号叶片的光合速率在旱作条件下的提高幅度更大, 提高了31.78%~123.72%, 而内燕5号在旱作和灌水条件下增幅基本一致; 在旱作条件下喷施腐植酸后两品种籽粒产量和β-葡聚糖含量均显著提高, 尤其以内燕5号的提高幅度更大, 分别提高了5.60%~74.68%和11.24%~19.56%; 与旱作处理相比, 在灌水条件下喷施HA, 两品种籽粒β-葡聚糖含量提高幅度更大, 分别提高了11.30%~33.29%和7.76%~43.81%。通过各指标之间的相关性分析, 蒙农大燕1号品种叶片的光合速率与籽粒β-葡聚糖含量、穗长、单穗小穗数、单穗粒重、千粒重及籽粒产量呈显著正相关关系, 籽粒产量与穗长、单穗小穗数、单穗粒重、千粒重呈显著正相关关系, 籽粒β-葡聚糖与单穗小穗数、千粒重和籽粒产量呈显著正相关关系(P<0.05), 而内燕5号品种籽粒β-葡聚糖含量与各产量构成因子正相关, 但未达到显著水平。综上说明, 水分和腐植酸协同作用可有效改善燕麦叶片的光合性能, 并且协同提高籽粒产量和β-葡聚糖含量。
[1] | 任长忠, 崔林, 何峰, 欧阳韶晖, 胡新中, 李再贵, 陕方. 我国燕麦荞麦产业技术体系建设与发展. 吉林农业大学学报, 2018, 40: 524-532. |
Ren C Z, Cui L, He F, Ou-Yang S H, Hu X Z, Li Z G, Shan F. Construction and development of China oat and buckwheat industrial technology system. J Jilin Agric Univ, 2018, 40: 524-532. (in Chinese with English abstract) | |
[2] | Wood P J. Cereal beta-glucans in diet and health. J Cereal Sci, 2007, 45: 230-238. |
[3] |
Nazare J-A, Normand S, Triantafyllou A O, Desage M, Laville M. Modulation of the postprandial phase by β-glucan in overweight subjects: effects on glucose and insulin kinetics. Mol Nutr Food Res, 2009, 53: 361-369.
doi: 10.1002/mnfr.200800023 |
[4] |
Marshall A, Cowan S, Edwards S, Griffiths I, Howarth C, Langdon T, White E. Crops that feed the world 9. Oats-a cereal crop for human and livestock feed with industrial applications. Food Secur, 2013, 5: 13-33.
doi: 10.1007/s12571-012-0232-x |
[5] |
Bodner G, Nakhforoosh A, Kaul H P. Management of crop water under drought: a review. Agron Sustain Dev, 2015, 35: 401-442.
doi: 10.1007/s13593-015-0283-4 |
[6] | Kadam N N, Xiao G, Melgar R J. Chapter 3: agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv Agron, 2014, 127: 111-156. |
[7] | 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013. |
Ren C Z, Hu Y G. Chinese Oatology. Beijing: China Agriculture Press, 2013 (in Chinese) | |
[8] | Liu D Q, Wan F, Guo R, Li F M, Cao H H, Sun G J. GIS-based modeling of potential yield distributions for different oat varieties in China. Math Comput Mod, 2011, 54: 869. |
[9] | 苏日娜. 中国燕麦产业发展研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2013. |
Su R N. Research on the Development of China’s Oat Industry. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2013. (in Chinese with English abstract) | |
[10] |
Humphreys D G, Mather D E. Heritability of β-glucan, groat- percentage, and crown rust resistance in two oat crosses. Euphytica, 1996, 91: 359-364.
doi: 10.1007/BF00033098 |
[11] |
Doehlert D C, McMullen M S, Hammond J J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci, 2001, 41: 1066-1072.
doi: 10.2135/cropsci2001.4141066x |
[12] |
Brunner B R, Freed R D. Oat grain β-glucan content as affected by nitrogen level, location and year. Crop Sci, 1994, 34: 473-476.
doi: 10.2135/cropsci1994.0011183X003400020031x |
[13] |
Peterson D M, Wesenberg D M, Burrup D E. β-glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop Sci, 1995, 35: 965-970.
doi: 10.2135/cropsci1995.0011183X003500040005x |
[14] | Guler M. Nitrogen and irrigation effects on grain beta-glucan content of oats (Avena sativa L.). Austr J Crop Sci, 2011, 5: 239-244. |
[15] |
Chernyshova A A, White P J, Scott M P. Selection for nutritional function and agronomic performance in oat. Crop Sci, 2007, 47: 2330-2339.
doi: 10.2135/cropsci2006.12.0759 |
[16] | Cervantes-Martinez C T, Frey K J, White P J. Correlated responses to selection for greater β-glucan content in two oat populations. Crop Sci, 2002, 42: 730-738. |
[17] | 程亮, 张保林, 王杰, 史亚龙, 陈可可. 腐植酸肥料的研究进展. 中国土壤与肥料, 2011, (5): 1-6. |
Cheng L, Zhang B L, Wang J, Shi Y L, Chen K K. Research progress of humic acid fertilizers. Soils Fert China, 2011, (5): 1-6. (in Chinese with English abstract) | |
[18] |
Lotfi R, Kalaji H M, Valizadeh G R, Khalilvand Behrozyar E, Hemati A, Gharavi-Kochebagh P, Ghassemi A. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica, 2018, 56: 962-970.
doi: 10.1007/s11099-017-0745-9 |
[19] | 刘伟, 刘景辉, 萨如拉. 腐植酸水溶肥料对燕麦叶片保护酶活性和渗透物质的影响. 灌溉排水学报, 2014, 33(1): 107-109. |
Liu W, Liu J H, Sarula. Effects of humic acid water-soluble fertilizers on protective enzyme activities and osmotic substances in oat leaves. J Irrig Drain, 2014, 33(1): 107-109. (in Chinese with English abstract) | |
[20] |
Robredo A, Pérez-lópez U, Lacuesta M, Mena-Petite A, Munoz- Rueda A. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant, 2010, 54: 285-292.
doi: 10.1007/s10535-010-0050-y |
[21] |
Liu B H, Liang J, Tang G M, Wang X F, Liu F C, Zhao D C. Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Sci Hortic, 2019, 250: 230-235.
doi: 10.1016/j.scienta.2019.02.056 |
[22] | Janani P, Kumar N, Jegadeeswari V. Dynamics of gas exchange and chlorophyll fluorescence parameters of cocoa genotypes in response to water deficit. J Pharm Phytochem, 2019, 8: 415-419. |
[23] |
Farooq M, Wahid A, Kobayashi N. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009, 29: 185-212.
doi: 10.1051/agro:2008021 |
[24] | 邓万和, 王强, 吕耀昌, 周素梅. 品种和环境效应对燕麦β-葡聚糖含量的影响. 中国粮油学报, 2005, 20(2): 30-32. |
Deng W H, Wang Q, Lyu Y C, Zhou S M. Effects of variety and environmental effects on the content of oat β-glucan. J Chin Cereals Oils Assoc, 2005, 20(2): 30-32. (in Chinese with English abstract) | |
[25] | 王冰, 朱莉, 李茂玮, 詹晓北. 适应性驯化生产低分子质量β-葡聚糖及其抗氧化活性研究. 食品与发酵工业, 2021, 47(17): 27-33. |
Wang B, Zhu L, Li M W, Zhan X B. Adaptive domestication to produce low molecular weight β-glucan and its antioxidant activity. Food Ferment Ind Sin, 2021, 47(17): 27-33. (in Chinese with English abstract) | |
[26] | 张俊峰, 段娜, 刘兵兵, 刘龙龙, 赵文千. 灌浆期干旱胁迫对燕麦籽粒β-葡聚糖含量的影响. 山西农业科学, 2020, 48: 884-888. |
Zhang J F, Duan N, Liu B B, Liu L L, Zhao W Q. Effects of drought stress during grain filling period on β-glucan content in oat grains. Shanxi Agric Sci, 2020, 48: 884-888. (in Chinese with English abstract) | |
[27] |
Zhang X, Huang G, Bian X, Zhao Q G. Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize, and the quantity of microorganisms and activity of enzymes in the rhizosphere. Plant Soil, 2013, 368: 407-417.
doi: 10.1007/s11104-012-1528-5 |
[28] | 韩文元. 水分与腐植酸对燕麦抗旱性、产量形成和品质的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2016. |
Han W Y. Effects of Moisture and Humic Acid on Drought Resistance, Yield Formation and Quality of Oats. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2016. (in Chinese with English abstract) | |
[29] | 孙雯. 水分和腐植酸对燕麦光合、糖代谢及产量和β-葡聚糖形成的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2018. |
Sun W. Effects of Water and Humic Acid on Oat Photosynthesis, Sugar Metabolism, Yield and β-glucan Formation. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract) | |
[30] |
Dong C C, Yong I J, Nam J H, Chung G C, Ji H C, Su J K, Hong S Y. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Res, 2018, 215: 156-162.
doi: 10.1016/j.fcr.2017.10.008 |
[31] | Moghadam H R T, Khamene M K, Zahedi H. Effect of humic acid foliar application on growth and quantity of corn in irrigation withholding at different growth stages. Maydica, 2014, 59: 125-129. |
[32] | Hartz T K, Bottoms T G. Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. Hortic Sci, 2010, 45: 906-910. |
[33] | Ahmad W, Shah Z, Khan F, Ali S, Malik W. Maize yield and soil properties as influenced by integrated use of organic, inorganic and bio-fertilizers in a low fertility soil. Soil Environ, 2013, 32: 121-129. |
[34] | 李英浩, 刘景辉, 朱珊珊. 干旱胁迫下腐植酸对燕麦叶片光合性能的调控效应. 麦类作物学报, 2019, 39: 1385-1391. |
Li Y H, Liu J H, Zhu S S. Regulation effects of humic acid on photosynthetic performance of oat leaves under drought stress. J Triticeae Crops, 2019, 39: 1385-1391. (in Chinese with English abstract) |
[1] | 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299. |
[2] | 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338. |
[3] | 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408. |
[4] | 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052. |
[5] | 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087. |
[6] | 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821. |
[7] | 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760. |
[8] | 赵影星, 王彪, 刘晴, 宋彤, 张学鹏, 陈源泉, 隋鹏. 黑龙港平原基于麦-玉复种的两年轮作模式农田水分消耗特征研究[J]. 作物学报, 2022, 48(7): 1787-1779. |
[9] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[10] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[11] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[12] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[13] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[14] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[15] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
|