Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (06): 988-995.doi: 10.3724/SP.J.1006.2012.00988
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
NIE Yuan-Yuan1,2,ZOU Gui-Hua3,LI Yao4,LIU Guo-Lan2,CAI Yao-Hui1,MAO Ling-Hua1,YAN Long-An1,LIU Hong-Yan2,*,LUO Li-Jun2,*
[1]Brown L R, Halweil B. China’s water shortage could shake world food security. World Watch, 1998, 7: 3–4[2]Luo L-J(罗利军), Zhang Q-F(张启发). The status and strategy on drought resistance of rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2001, 15(3): 209–214 (in Chinese with English abstract)[3]Teng S(腾胜), Qian Q(钱前), Zeng D-L(曾大力), Kunihiro Y(国广泰史), Fujimoto K(藤本宽), Huang D-N(黄大年), Zhu L-H(朱立煌). Analysis of gene loci and epistasis for drought tolerance in seedling stage of rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2002, 29(3): 235–240 (in Chinese with English abstract)[4]Champoux M C, Wang G, Sarkarung S. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90: 969–981[5]Price A H, Tomos A D. Genetic dissection of root growth in rice (Oryza sativa L.): II. Mapping quantitative trait loci using molecular markers. Theor Appl Genet, 1997, 95: 143–152[6]Ray J D, Yu L X, Mccouch S R. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627–636[7]Xu J-C(徐吉臣), Li J-Z(李晶昭), Zheng X-W(郑先武), Zou L-X(邹亮星), Zhu L-H(朱立煌). QTL mapping of the root traits in rice seedling. Acta Genet Sin (遗传学报), 2001, 28(5): 433–438 (in Chinese with English abstract)[8]Zheng B S, Yang L, Zhang W P. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet, 2003, 107: 1505–1515[9]Luo L-J(罗利军), Mei H-W(梅捍卫), Yu X-Q(余新桥), Liu H-Y(刘鸿艳), Feng F-J(冯芳君). Water-saving and drought-resistance rice and its development strategy. Chin Sci Bull (科学通报), 2011, 56(11): 804–811 (in Chinese with English abstract)[10]Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet, 2004, 109: 1237–1246[11]Reynolds M P, Trethowan R M, Ginkel M, Rajaram S. General considerations in physiological breeding. In: Reynolds M P, Ortiz-Monasterio J I, McNab A, eds. Application of Physiology in Wheat Breeding. Mexico, International Maize and Wheat Improvement Center (CIMMYT), 2001. pp 2–86[12]Liu H-Y(刘鸿艳), Zou G-H(邹桂花), Liu G-L(刘国兰), Hu S-P(胡颂平), Li M-S(李明寿), Yu X-Q(余新桥), Mei H-W(梅捍卫), Luo L-J(罗利军). Correlation analysis and QTL identification for canopy temperature, leaf water potential and spikelet fertility in rice under contrasting moisture regimes. Chin Sci Bull (科学通报) , 2005, 50(2): 130–139 (in Chinese with English abstract)[13]Zou G H, Mei H W, Liu H Y, Liu G L, Hu S P, Yu X Q, Li M S, Wu J H, Luo L J. Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. Theor Appl Genet, 2005, 112: 106–113[14]Garrity D P, O’Toole J C. Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron J, 1995, 87: 773–779[15]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255–1264[16]Zeng H, Luo L, Zhang W, Zhou J, Li Z, Liu H, Zhu T, Feng X, Zhong Y. Plant QTL-GE: a database system for identifying candidate genes in rice and Arabidopsis by gene expression and QTL information. Nucl Acids Res, 2007, 35: D879–D882[17]Bohnert H, Shen J. Transformation and compatible solutes. Sci Hort, 1998, 78: 237–260[18]Hemamalini G S, Shashidhar H E, Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica, 2000, 112: 69–78[19]Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 2006, 172: 1213–1228[20]Nguyen T T T, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena A C M, Pathan M, Nguyen H T. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genet, 2004, 272: 35–46[21]Lanceras J C, Pantuwan G, Jongdee B, Toojinda T. Quantitative trait Loci associated with drought tolerance at reproductive stage in rice. Plant Physiol, 2004, 35: 384–399[22]Zhang J, Zheng H G, Aarti A, Pantuwan G, Nguyen T T, Tripathy J N, Sarial A K, Robin S, Babu R C, Nguyen B D, Sarkarung S, Blum A, Nguyen H T. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet, 2001, 103: 19–29[23]Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa ? Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41–42[24]Lafitte R, Blum A, Atlin G. Using secondary traits to help identify drought-tolerant genotypes. In: Fischer K S, Lafitte R, Fukai S, Atlin G, Hardy B, eds. Breeding Rice for Drought-Prone Environments. Los Banos, the Philippines: IRRI, 2003. pp 37–48[25]Hemamalini G S, Shashidhar H E, Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica, 2000, 112: 69–78 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|