Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (11): 1988-1996.doi: 10.3724/SP.J.1006.2012.01988
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SUN Bo,ZHOU Yong,LIN Yong-Jun*
[1]Quirino B F, Noh Y S, Himelblau E, Amasino R M. Molecular aspects of leaf senescence. Trends Plant Sci, 2000, 5: 278-282[2]Yoshida S. Molecular regulation of leaf senescence. Curr Opin Plant Biol, 2003, 6: 79-84[3]Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J, 2005, 42: 567-585[4]Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115-136[5]Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol, 2009, 149: 885-893[6]Pulido A, Laufs P. Co-ordination of developmental processes by small RNAs during leaf development. J Exp Bot, 2010, 61: 1277-1291[7]Shan X Y, Wang J, Chua L L, Jiang D, Peng W, Xie D X. The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence. Plant Physiol, 2011, 155:751-764[8]Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot, 1997, 307: 181-199[9]Nooden L D, Guiamet J J, John I. Senescence mechanisms. Physiol Plant, 1997, 101: 746-753[10]Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnol J, 2003, 1: 3-22[11]Gan S ed. Senescence Processes in Plants. Annual Plant Reviews, Vol. 26. Oxford: Blackwell Publishing Ltd. 2007[12]Yen C H, Yang C H. Evidence for programmed cell death during leaf senescence in plants. Plant Cell Physiol, 1998, 39: 922-927[13]Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132: 4563-4574[14]Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601-612[15]Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298-1301[16]Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M. Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA, 2007, 104: 14169-14174[17]Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell, 2009, 21:767-785[18]Sharabi-Schwager M, Lers A, Samach A, Guy C L, Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot, 2010, 61: 261-273[19]Xiao S, Gao W, Chen Q F, Chan S W, Zheng S X, Ma J Y, Wang M F, Welti R, Chye M L. Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell, 2010, 22: 1463-1482[20]Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor M L, Xue G P, Mueller-Roeber B. ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant, 2011, 4: 346-360[21]Besseau S, Li J, Palva E T. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot, 2012, DOI:10.1093/jxb/err450[22]Zhang Q F. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409[23]National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science, 2003, 301: 376-379[24]Xie K B, Zhang J W, Xiang Y, Feng Q, Han B, Chu Z H, Wang S P, Zhang Q F, Xiong L Z. Isolation and annotation of 10828 putative full length cDNAs from indica rice. Sci China (Series C-Life Sci), 2005, 48: 445-451[25]Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D X, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003, 35:418-427[26]Jeong D H, An S, Park S, Kang H G, Park G G, Kim S R, Sim J, Kim Y O, Kim M K, Kim S R, Kim J, Shin M, Jung M, An G. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J, 2006, 45:123-132[27]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. Plant J , 1994, 6 :271-282[28]Lin Y J, Zhang Q F. Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23: 540-547[29]Liu L, Zhou Y, Zhou G, Ye R J, Zhao L N, Li X H, Lin Y J. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol, 2008, 67: 37-55[30]Wang L, Xie W B, Chen Y, Tang W J, Yang J Y, Ye R J, Liu L, Lin Y J, Xu C G, Xiao J H, Zhang Q F. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J, 2010, 61:752-766[31]Cha K W, Lee Y J, Koh H J, Lee B M, Nam Y W, Paek N C. Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet, 2002, 104: 526-532[32]Lee R H, Lin M C, Chen S C. A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol, 2004, 55: 281-295[33]Ansari M I, Lee R H, Chen S C G. A novel senescence-associated gene encoding γ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant, 2005, 123: 1-8[34]Kong Z, Li M, Yang W, Xu W, Xue Y. A novel nuclear-localized CCCH-Type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376-1388[35]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375[36]Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197-209[37]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664[38]Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40[39]Zhang W, Zhou X, Wen C K. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. J Exp Bot, 2012, 63: 4151-4164[40]Jiao B B, Wang J Y, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205-217[41]Lu L X, Zhou F, Zhou Y, Fan X L, Ye S F, Wang L, Chen H, Lin Y J. Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection. Plant Cell Rep, 2012, 31: 1173-1187[42]Taiz L, Zeigen E. Plant Physiology (Fourth Edition). Beijing: Science Press, 2009. pp 340-341[43]Gepstein S, Sabehi G, Carp M J, Hajouj T, Nesher M F, Yariv I, Dor C, Bassani M. Large-scale identification of leaf senescence-associated genes. Plant J, 2003, 36: 629-642[44]Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y. A transcriptional timetable of autumn senescence. Genome Biol, 2004, 5:R24[45]Lin J F, Wu S H. Molecular events in senescing Arabidopsis leaves. Plant J, 2004, 39: 612-628[46]Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J, 2005, 42: 567-585[47]van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge U I, Kunze R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006, 141: 776-792[48]Ueda J, Kato J. Identification of a senescence-promoting substance from wormwood (Artemisia absinthum L.). Plant Physiol, 1980, 66:246-249[49]He Y H, Fukushige H, Hildebrand D F, Gan S S. Evidence supporting a role of jamonic acid in Arabidopsis leaf senescence. Plant Physiol, 2002, 128:876-884[50]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1966-1967[51]Matthews R. Disease symptoms and effects on metabolism. Plant Virol, 1991, 380-422[52]Huynh L N, VanToai T, Streeter J, Banowetz G. Regulation of flooding tolerance of SAG12: ipt Arabidopsis plants by cytokinin. J Exp Bot, 2005, 56: 1397-1407[53]Calderini O, Bovone T, Scotti C, Pupilli F, Piano E, Arcioni S. Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Rep, 2007, 26: 611-615 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|