Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (04): 617-625.doi: 10.3724/SP.J.1006.2013.00617


Mapping of QTLs for Grain Shape Using Chromosome Single Segment Substitution Lines in Rice (Oryza sativa L.)

WANG Jun1,ZHU Jin-Yan1,ZHOU Yong2,YANG Jie1,FAN Fang-Jun1,LI Wen-Qi1,LIANG Guo-Hua2,*,ZHONG Wei-Gong1,*   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China; 2 Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Function Genomics, Ministry of Education Yangzhou University, Yangzhou 225009, China
  • Received:2012-08-24 Revised:2012-12-08 Online:2013-04-12 Published:2013-01-28
  • Contact: 仲维功, E-mail: wgzhong0503@yahoo.com.cn?; 梁国华, E-mail: ricegb@yzu.edu.cn


Grain shape is one of the important factors determining rice yield and grain quality, it is a typical quantitative trait controlled by multiple genes. As novel research material, chromosome single segment substitution lines are useful in QTL identification because of minimizing the interference of genetic background among plants. In this study, QTLs for grain shape were identified with 119 rice chromosome single segment substitution lines derived from Nipponbare as donor parentin the background of Guanglu’ai 4 by one-way analysis of variance and Dunnett’s test for means comparisons between chromosome single segment substitution lines and the recipient parent Guanglu’ai 4.A total of 39 QTLs for grain shape were identified on 11 chromosomes except chromosome 10 with a significance of P≤0.001. Among them, 19 QTLs were identified for grain length, with the additive effect from 0.18 mm to 1.06 mm and the additive effect percentages from 2.40% to 14.13%; 14 QTLs were identified for grain width, with the additive effect from 0.09 mm to 0.31 mm and the additive effect percentages from 2.71% to 9.15%; and 6 QTLs were identified for grain thickness, with the additive effect from 0.05 mm to 0.10 mm and the additive effect percentages from 2.14% to 4.46%. The results are important for the QTLs cloning and molecular breeding of rice grain shape.

Key words: Rice, Chromosome single segment substitution lines, Quantitative trait loci, Grain shape, Substitution mapping

[1]Wu S-H(吴绍洪), Li R-S(李荣生). Food demand, ensure and countermeasures for China in the next 30 years. Prog Geogr (地理科学进展), 2002, 21(2): 121–129 (in Chinese with English abstract)

[2]Xu Z-J(徐正进), Chen W-F(陈温福), Ma D-R(马殿荣), Lü Y-N(吕英娜), Zhou S-Q(周淑清), Liu L-X(刘丽霞). Correlations between rice grain shapes and main qualitative characteristics. Acta Agron Sin (作物学报), 2004, 30(9): 894–900 (in Chinese with English abstract)

[3]Yang L-S(杨联松), Bai Y-S(白一松), Xu C-W(许传万), Hu X-M(胡兴明), Wang W-M(王伍梅). Research on the correlation between rice grain shape and rice grain quality. J Anhui Agric (安徽农业科学), 2001, 29(3): 312–316 (in Chinese with English abstract)

[4]Lin H-X(林鸿宣), Min S-K(闵绍楷), Xiong Z-M(熊振民), Qian H-R(钱惠荣), Zhuang J-Y(庄杰云), Lu J(陆军), Zheng K-L(郑康乐), Huang N(黄宁). RFLP mapping of QTLs for grain shape traits in indica rice (Oryza sativa L. subsp. indica). Sci Agric Sin (中国农业科学), 1995, 28(4): 1–7 (in Chinese with English abstract)

[5]Xing Y-Z(邢永忠), Tan Y-F(谈移芳), Xu C-G(徐才国), Hua J-P(华金平), Sun X-L(孙新立). Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin (植物学报), 2001, 43(8): 840–845 (in Chinese with English abstract)

[6]Yang L-S(杨联松), Bai Y-S(白一松), Xu C-W(许传万), Hu X-M(胡兴明), Wang W-M(王伍梅), She D-H(佘德红), Chen G-Z(陈桂芝). Research progress of rice grain type and its inheritance. J Anhui Agric (安徽农业科学), 2001, 29(2): 164–167 (in Chinese with English abstract)

[7]Wu C-M(吴长明), Sun C-Q(孙传清), Chen L(陈亮), Li Z-C(李自超), Wang X-K(王象坤). Analysis QTL of grain shape by using of RFLP map in rice. J Jilin Agric Sci (吉林农业科学), 2002, 27(5): 3–7 (in Chinese with English abstract)

[8]Zhang G-H(张光恒), Zhang G-P(张国平), Qian Q(钱前), Xu L-P(徐律平), Zeng D-L(曾大力), Teng S(滕胜), Bao J-S(包劲松). QTL analysis of grain shape traits in different environments. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 16–22 (in Chinese with English abstract)

[9]Li M-M(黎毛毛), Xu L(徐磊), Ren J-F(任军芳), Cao G-L(曹桂兰), Yu L-Q(余丽琴), He H-H(贺浩华), Han L-Z(韩龙植), Koh H-J(高熙宗). Identification of quantitative trait loci for grain traits in japonica rice. Sci Agric Sin (中国农业科学), 2009, 42(7): 2255–2261 (in Chinese with English abstract)

[10]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171

[11]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630

[12]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028

[13]Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199–1209

[14]Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266–1269

[15]Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, DOI:10.1038/ng.2327

[16]Liu G-M(刘冠明), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang Z-M(张泽民), Zhang G-Q(张桂权). Identification of QTLs on substituted segments in single segment substitution lines of rice. Acta Genet Sin (遗传学报), 2004, 31(12): 1395–1400 (in Chinese with English abstract)

[17]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162

[18]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13

[19]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735–742

[20]Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95–101

[21]Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali A J. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica, 2004, 137: 325–332

[22]Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110: 1334–1346

[23]Wan X-Y(万向元), Liu S-J(刘世家), Wang C-M(王春明), Jiang L(江玲), Zhai H-Q(翟虎渠), Yoshimura A, Wan J-M(万建民). Stable expression of QTL for grain shape of milled rice (Oryza sativa L.) using a CSSLs population. Acta Genet Sin (遗传学报), 2004, 31(11): 1275–1283 (in Chinese with English abstract)

[24]Zeng R-Z(曾瑞珍), Talukdar A, Liu F(刘芳), Zhang G-Q(张桂权). Mapping of the QTLs for grain shape using single segment substitution lines in rice. Sci Agric Sin (中国农业科学), 2006, 39(4): 647–654 (in Chinese with English abstract)

[25]Zhu W-Y(朱文银), Yang D-W(杨德卫), Lin J(林静), Zhao L(赵凌), Zhang Y-D(张亚东), Zhu Z(朱镇), Chen T(陈涛), Wang C-L(王才林). Substitution mapping of QTLs for grain shape using chromosome segment substitution lines in rice (Oryza sativa L.) Jiangsu J Agric Sci (江苏农业学报), 2008, 24(3): 226–231 (in Chinese with English abstract)

[26]Li S-Q(李生强), Cui G-K(崔国昆),关成冉(Guan C-R), Wang J(王俊), Liang G-H(梁国华). QTL detection for rice grain shape using chromosome single segment substitution lines. Chin J Rice Sci (中国水稻科学), 2011, 25(2): 163–168 (in Chinese with English abstract)

[27]Zhao F-M(赵芳明), Zhang G-Q(张桂权), Zeng R-Z(曾瑞珍), Yang Z-L(杨正林), Ling Y-H(凌英华), Sang X-C(桑贤春), He G-H(何光华). Analysis of epistatic and additive effects of QTLs for grain shape using single segment substitution lines in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2011, 37(3): 469–476 (in Chinese with English abstract)

[28]Xu J-J(徐建军), Zhao Q(赵强), Tang Z-X(汤在祥), Zhao Y-F(赵元凤), Zhu L(朱磊), Xu C-W(徐辰武), Gu M-H(顾铭洪), Han B(韩斌), Liang G-H(梁国华). Mapping of QTLs for gain shape using whole-genome resequenced chromosome segment substitution lines in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(4): 365–369 (in Chinese with English abstract)

[29]Zhang Q(张强), Yao G-X(姚国新), Hu G-L(胡广隆), Tang B(汤波), Chen C(陈超), Li Z-C(李自超). Identification of QTLs for grain traits in rice using extreme materials in grain size. Acta Agron Sin (作物学报), 2011, 37(5): 784–792 (in Chinese with English abstract)

[30]Yao G-X(姚国新), Li J-J(李金杰), Zhang Q(张强), Hu G-L(胡广隆), Chen C(陈超), Tang B(汤波), Zhang H-L(张洪亮), Li Z-C(李自超). Mapping QTLs for grain weight and shape using four sisters near isogenic lines in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(8): 1310–1317 (in Chinese with English abstract)

[31]Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet, 2010, 11: 16–26

[32]Shao G N, Tang S Q, Luo J, Jiao G A, Wei X J, Tang A, Wu J L, Zhuang J Y, Hu P S. Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. J Genet Genomics, 2010, 37: 523–531

[33]Shi C-H(石春海), Shen Z-T(申宗坦). Inheritance and improvement of grain shape in indica rice. Chin J Rice Sci (中国水稻科学), 1995, 9(1): 27–32 (in Chinese with English abstract)
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Full text



No Suggested Reading articles found!