Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 845-860.doi: 10.3724/SP.J.1006.2015.00845

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Expression Analysis of Genes Involved in Peanut Seed Dormancy Release (Arachis hypogaea L.)

CHEN Jing1,4,JIANG Ling1,WANG Chun-Ming1,HU Xiao-Hui4,ZHAI Hu-Qu3,WAN Jian-Min1,2,*   

  1. 1 State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4 Shandong Peanut Research Institute, Qingdao 266100, China
  • Received:2014-12-15 Revised:2015-03-09 Online:2015-06-12 Published:2015-04-21

Abstract:

Seed dormancy is one of important agronomic traits in peanut (Arachis hypogaea L.). Seed dormancy can be released with exogenous ethephon. To understand the molecular mechanisms of switches from dormancy to germination in peanut seeds underlying the role of ethephon, we preformed transcriptome analyses among imbibed dormant seeds as control and dormancy-released seeds (AE1, AE2, AE3) treated by 100 mg L–1 exogenous ethephon, and compared the expression of unigenes related to ABA, GA, ETH and auxin. The results showed that there were 15, 40, 60, and 56 unigenes associated with GA, ABA, ETH, and auxin respectively, which were significantly differentially expressed unigenes during the process from dormancy to germination. The results of Real-time RT-PCR showed that the expressions of AhNCED2 and AhCYP707A1 were induced distinctly by exogenous ethephon in seed dormancy released process. In dormant and non-dormant seed imbibition and germination processes, there were different roles between expresses of AhNCED2 and AhCYP707A1. AhNCED2 played a positive role in maintaining seed dormancy, while AhCYP707A1 played a positive role for seed dormancy breaking.

Key words: Peanut, Seed, Dormancy, ABA, AhNCED2, AhCYP707A1

[1]Bewley J D, Bradford K J, Hilhorst H W M, Nonogaki H. Seed Physiology of Development, Germination and Dormancy (3rd edn). London: Springer New York Heidelberg Dordrecht London, 2013, pp 247–295

[2]曹雅君, 江玲, 罗林广, 翟虎渠, 志村英二, 杨世湖, 万建民. 水稻品种休眠特性的研究. 南京农业大学学报, 2001, 24(2): 1–5

Cao Y J, Jiang L, Luo LG, Zhai H Q, Shimura E, Yang S H, Wan J M. A study on seed dormancy in rice (Oryza sativa L.). J Nanjing Agric Univ, 2001, 24(2): 1–5 (in Chinese with English abstract)

[3]徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141−1156

Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141−1156 (in Chinese with English abstract)

[4]Erwann A, Julien S, Francoise C, Loic R, Marion-poll A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Plant Cell Biol, 2013, 4: 1−19

[5]Ali-Rachedi S, Bouinot D, Wagner M H, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 2004, 219: 479-488

[6]Cadman C S, Toorop P E, Hilhorst H W, Finch-Savage W E. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006, 46: 805−822

[7]Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci Res, 2010, 20: 55−67

[8]Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou J P, Kamiya Y J, Nambar E, Truong H N. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol, 2009, 149: 949−960

[9]Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol, 2006, 141: 97–107

[10]Penfield S, Li Y, Gilday A D, Graham S, Graham I A. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell, 2006, 18: 1887–1899

[11]Matilla A J. Ethylene in seed formation and germination. Seed Sci Res, 2000, 10: 111–126

[12]Siriwitayawan G, Geneve R L, Downie A B. Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Sci Res, 2003, 13: 303–314

[13]Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J, Ross A R S and Kermode A R The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J, 2005, 42: 35–48

[14]Karssen C M, Zagorski S, Kepczynski J, Groot S P C. Key role for endogenous gibberellins in the control of seed germination . Ann Bot-London, 1989, 63: 71–80

[15]Koornneef M, Karssen C M. Seed dormancy and germination. In: Meyerowitz E M, Sommerville C R, eds. Arabidopsis. NewYork: Cold Spring Harbor Laboratory, 1994. PP: 313–334

[16]禹山林. 中国花生遗传育种学. 上海: 上海科学技术出版社, 2011

Yu S L. Genetics and Breeding of China peanut. Shanghai: Shanghai Science and Technology Press, 2011 (in Chinese)

[17]周桂元, 梁炫强. 花生种子休眠性的研究进展. 江西农业学报, 2011, 23(11): 61–63

Zhou G Y, Liang X Q. Research advance in seed dormancy of peanut. Acta Agric Jiangxi, 2011, 23: 61–63 (in Chinese with English abstract)

[18]Kumarl S S, Patel S A. Seed dormancy in groundnut (Arachis hypogaea L.): II Estimation of gene effects in six crosses. Trop Agric (Trinidad), 1999, 76: 188–192

[19]Upadhyaya H D, Nigam S N. Inheritance of fresh seed dormancy in Peanut. Crop Sci, 1999, 39: 98–101

[20]胡晓辉, 苗华荣, 杨伟强, 张建成, 陈静. 花生种子休眠性的遗传分析及其影响因素的研究. 核农学报, 2013, 27: 1449–1455

Hu X H, Miao H R, Yang W Q, Zhang J C, Chen J. Genetic analysis and factors influencing peanut (Arachis hypogaea L.) seed dormancy. J Nucl Agric Sci, 2013, 27: 1449–1455 (in Chinese with English abstract)

[21]Vivian K. Toole, Bailey W K, Toole E H. Factors influencing dormancy of peanut seeds. Plant Physiol, 1964, 823–832

[22]Ketring D L, Morgan P W. P hysiology of Oil Seeds I. Regulation of dormancy in Virginia-type peanut seed. Plant Physiol, 1970, 45: 268–273

[23]Ketring D L, Morgan P W. Physiology of Oil Seeds II. Dormancy release in Virginia-type peanut seeds by plant growth regulators. Plant Physiol, 1971, 47: 488–492

[24]Ketring D L, Morgan P W. Ethylene as a component of the emanations from germinating peanut seeds and its effect on dormant Virginia-type seeds. Plant Physiol, 1969, 44: 326–330

[25]Wang M L, Chen C Y, Pinnow D L, Barkley N A, Pittman R N, Lamb M, Pederson G C. Seed dormancy variability in the US peanut Mini-core collection. Res J Seed Sci, 2012, 5: 84–95

[26]Issa F, Danièl F, Jean-François R, Hodo-Abolo T, Mbaye–Ndoye S, Tahir D A, Ousmane N. Inheritance of fresh seed dormancy in Spanish-type peanut (Arachis hypogaea L.): bias introduced by inadvertent selfed flowers as revealed by microsatellite markers control. Afr J Biotechnol, 2010, 9: 1905–1910

[27]Asibuo J Y, Akromah R, Safo-Kantanka O, Adu-Dupaah H, Seth K O, Agyemen A. Inheritance of fresh seed dormancy in groundnut. Afr J Biotechnol, 2008, 7: 421–424

[28]Sun T P, Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol, 2004, 55: 197–223

[29]Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol Plant Mol Bio , 1984, 35: 155–189

[30]Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot, 2009, 60: 3311–3336

[31]Gonzalez-Guzman M, Abia D, Salina J, Serrano R, Rodriguez P. Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiol, 2004, 135: 325–333

[32]Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases:key enzymes in ABA catabolism. EMBOJ, 2004, 23: 1647–1656

[33]Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J Exp Bot, 2006, 57: 2421–2434

[34]Millar A A, Jacobsen J V, Ross J J, Helliwell C A, Poole A T, Scofield G, Reid J B, Gubler F. Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8'-hydroxylase. Plant J, 2006, 45: 942–954

[35]Thompson A J, Jackson A C, Parker R A, Morpeth D R, Burbidge A, Taylor I B. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cyeles, water stress and abscisic acid. Plant Mol Biol, 2000, 42: 833–845

[36]White C N, Proebsting W M, Hedden P, White C N, Rivin C J. Gibberellins and seed development in maize. I. evidence that gibberelllin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol, 2000, 122: 1081–1088

[37]Calvo A P, Nicola S C, Nicolas G, Rodriguez D. Evidence of a cross-talk regulation of a GA 20-oxidase(FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant, 2004, 120: 623–6301

[38]Hermann K, Meinhard J, Dobrew P, Linkies A, Pesek B, Hess B, Machackova I, Fischer U, Leubner-Metzger G. 1-aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot, 2007, 58: 3047–3060

[39]Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vogeli-Lange R, Meins E. Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed germination. Plant Mol Biol, 1998, 38: 785–795

[40]Petruzzelli L, Coraggio L, Leubner-Metzger G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta, 2000, 211: 144–149

[41]Linkies A, Müller K, Morris K, Tureckova V, Wenk M, Cadman C S C, Corbineau F, Stmad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 2009, 21: 3803–3822

[42]Petruzzelli L, Sturaro M, Mainieri D, Leubner-Metzger G. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radical tissues of germinated pea seeds. Plant Cell Environ, 2003, 26: 661–671

[43]Teale W D, Paponov I A, Palme K. Auxin in action: signalling transport and the control of plant growth and development. Nat Rev Mol Cell Biol, 2006, 7: 847–859

[44]Leyser O. Dynamic integration of auxin transport and signalling. Curr Biol, 2006, 16: 424–433

[45]Quint M, Gray W M. Auxin signalling. Curr Opin Plant Biol, 2006, 9: 448–453

[46]Liu X D, Zhang H, Zhao Y, Feng Z, Li Q, Yang H Q, Luan S, Li J, He Z H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acd Sci USA, 2013, 110: 15485–15490

[47]Matilla A J, Matilla-Vazquez M A. Involvement of ethylene in seed physiology. Plant Sci, 2008, 175: 87–97

[48]Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell, 2000, 12: 1117–1126

[49]Kende H, Van der Knaap E, Cho H T. Deepwater rice: a model plant to study stem elongation. Plant Physiol, 1998, 118: 1105–1110

[50]Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000, 12: 1103–1116

[51]Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol, 2007, 64: 633–644

[52]Gazzarrini S, McCourt P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol, 2001, 4: 387–391

[53]Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005,15: 281–307

[54]Liu S, Lv Y, Wan X R, Li LM, Hu B, Li L. Cloning and expression analysis of cDNAs encoding ABA 8'-hydroxylase in peanut plants in response to Osmotic stress. PLoS One, 2014, 5: 1–9

[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[6] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[7] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[8] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[9] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[10] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
[11] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[14] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!