Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 872-880.doi: 10.3724/SP.J.1006.2015.00872

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Identification of Wheat Lines H3714 and H4058 Resistant to Cereal Cyst Nematode

SUN Xi-Ying1,2,CUI Lei2,3,SUN Lei2,SUN Yan-Ling2,QIU Dan1,2,ZOU Jing-Wei1,2,WU Xiao-Fei2,WANG Xiao-Ming2,LI Hong-Jie2,*   

  1. 1 College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;3 Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
  • Received:2015-01-16 Revised:2015-04-02 Online:2015-06-12 Published:2015-04-14

Abstract:

Cereal cyst nematode (CCN, Heterodera spp.) has occurred in major wheat (Triticum aestivum L.) producing regions in China. Developing wheat cultivars resistant to CCN is limited due to the shortage of effective sources of resistance. Madsen, a winter wheat cultivar released in the Pacific Northwest Region of the USA, is highly resistant to CCN populations from China. However, it is difficult to use this cultivar in breeding programs because of its late heading and maturity. In the present study, Chinese winter wheat cultivars Yannong 21 and Jimai 19 were crossed and backcrossed to Madsen, and lines H3714 and H4058 were developed from BC1F4 progenies. Tests under both natural infestation and artificial inoculation conditions indicated that resistance of H3714 and H4058 to the H. avenae Xingyang population (pathotype Ha43) and the H. filipjevi Xuchang population (pathotype Hfc-1) from Henan province was superior to that of Yannong 21 and Jimai 19. Results of the field test inoculated with a mixture of Bgt isolates demonstrated that both lines showed adult plant resistance to powdery mildew, and line H4058 was also resistant to different Bgt isolates at the seedling stage. The heading date of these lines was comparable to that of Yannong 21 and Jimai 19, and obviously earlier than that of Madsen. The fragments of chromosome 2NS from Aegilops ventricosa were detected in lines H3714 and H4058 using a pair of chromosome-specific primers VENTRIUP-LN2 and the molecular markers Vlr2.6-3′-Vlr2.4-5′ and VRGA-F11-VRGA-R5 that were specific for Vrga1D gene from Ae. ventricosa. Results of Illumina iSelect 90K SNP assay showed that the two lines differed in their chromosome constitutions. Two thirds of the polymorphic SNPs were identical and the remaining ones were different among 4918 polymorphic SNPs between the two sib lines. The newly developed wheat lines H3714 and H4058 can be used as sources of resistance in developing CCN-resistant wheat cultivars.

Key words: Triticum aestivum, Cereal cyst nematode, Powdery mildew, Resistance

[1]Peng D L, Nicol J M, Li H M, Hou S Y, Li H X, Chen S L, Ma P, Li H L, Riley I T. Current knowledge of cereal cyst nematode (Heterodera avenae) on wheat in China. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 29–34

[2]李惠霞, 柳永娥, 魏庄, 李敏全. 西藏和新疆自治区麦田禾谷孢囊线虫的检测. 见: 廖金铃, 彭德良, 段玉玺, 简恒, 李红梅(主编). 中国线虫学研究, 第四卷, 北京: 中国农业科学技术出版社, 2012. pp 164–165

Li H X, Liu Y E, Wei Z, Li M Q. The detection of Heterodera avenae from the cereal field in autonomous region of Tibet and Xinjiang. In: Liao J L, Peng D L, Duan Y X, Jian H, Li H M, eds. Nematology Research in China, Vol. 4. Beijing: China Agricultural Science and Technology Press, 2012. pp 164–165 (in Chinese)

[3]刘刚. 农业部种植业管理司提醒跨区收割可传带小麦孢囊线虫. 北京农业, 2009, (9): 42

Liu G. The Ministry of Agriculture Planting Industry Management department reminds that crop harvesting across regions can spread cereal cyst nematode. Beijing Agric, 2009, (9): 42

[4]Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L W, Gao X, Sun Y, Sun S C, Tang W H. Effective re-sources in wheat and Wheat-Thinopyrum derivatives for re-sistance to Heterodera filipjevi in China. Crop Sci, 2012, 52: 1209–1212

[5]赵洪海, 杨远永, 彭德良. 山东省主要小麦品种对禾谷孢囊线虫抗性的初步评价. 山东农业科学, 2012, 44(2): 80–83

Zhao H H, Yang Y Y, Peng D L. Preliminary evaluation on resistance of main wheat cultivars from Shandong province to cereal cyst nematode. Shandong Agric Sci, 2012, 44(2): 80–83 (in Chinese)

[6]李秀花, 马娟, 高波, 王容燕, 陈书龙. 部分国内外小麦种质资源对燕麦孢囊线虫的抗病性. 麦类作物学报, 2013, 33: 1277–1283

Li X H, Ma J, Gao B, Wang R Y, Chen S L. Resistance of wheat cultivars or germplasm lines to Heterodera avenae. J Triticeae Crops, 2013, 33: 1277–1283 (in Chinese with English abstract)

[7]邢小萍, 袁虹霞, 孙君伟, 张洁, 孙炳剑, 李洪连. 河南省小麦主推品种对2种禾谷孢囊线虫的抗性及其评价方法. 作物学报, 2014, 40: 805–815

Xing X P, Yuan H X, Sun J W, Zhang J, Sun B J, Li H L. Re-sistance to two species of cereal cyst nematode and evaluation methods in major wheat cultivars from Henan province, China. Acta Agron Sin, 2014, 40: 805–815 (in Chinese with English abstract)

[8]刘炳良, 孙成刚, 王暄, 向桂林, 宋志强, 高菲菲, 李红梅. 小麦品种对禾谷孢囊线虫(Heterodera avenae)江苏沛县群体的抗性鉴定. 麦类作物学报, 2012, 32: 563–568

Liu B L, Sun C G, Wang X, Xiang G L, Song Z Q, Gao F F, Li H M. Evaluation of the resistance of wheat cultivars to Peixian population of Heterodera avenae from Jiangsu province, China. J Triticeae Crops, 2012, 32: 563–568 (in Chinese with English abstract)

[9]代君丽, 崔磊, 刘珂, 宗莹莹, 袁虹霞, 邢小萍, 李洪杰, 李洪连. 小麦品种太空6号对Heterodera avenae郑州群体的抗性遗传分析. 作物学报, 2013, 39: 642–648

Dai J L, Cui L, Liu K, Zong Y Y, Yuan H X, Xing X P, Li H J, Li H L. Genetic analysis of common wheat cultivar Taikong 6 for resistance to Heterodera avenae Zhengzhou population. Acta Agron Sin, 2013, 39: 642–648 (in Chinese with English abstract)

[10]宗莹莹, 代君丽, 袁虹霞, 邢小萍, 孙炳剑, 李洪连. 普通小麦品种中育6号对两种禾谷孢囊线虫的抗性遗传分析. 麦类作物学报, 2013, 33: 249–254

Zong Y Y, Dai J L, Yuan H X, Xing X P, Sun B J, Li H L. Genetic analysis of resistance to cereal cyst nematode in common wheat variety Zhongyu 6. J Triticeae Crops, 2013, 33: 249–254 (in Chinese with English abstract)

[11]袁虹霞, 张福霞, 张佳佳, 侯兴松, 李洪杰, 李洪连. CIMMYT小麦种质资源对菲利普孢囊线虫(Heterodera filipjevi)河南许昌群体的抗性. 作物学报, 2011, 37: 1956–1966

Yuan H X, Zhang F X, Zhang J J, Hou X S, Li H J, Li H L. Resistance of CIMMYT wheat germplasm to Heterodera filipjevi Xuchang population from Henan province, China. Acta Agron Sin, 2011, 37: 1956–1966 (in Chinese with English abstract)

[12]高秀, 崔磊, 李洪连, 王晓鸣, 唐文华, Conner R L, 林小虎, 李洪杰. 硬粒小麦品种Waskana和Waskowa对禾谷孢囊线虫(Heterodera filipjevi和H. avenae)的抗性. 作物学报, 2012, 38: 571–577

Gao X, Cui L, Li H L, Wang X M, Tang W H, Conner R L, Lin X H, Li H J. Resistance of Triticum durum cultivars Waskana and Waskowa to cereal cyst nematode, Heterodera filipjevi and H. avenae. Acta Agron Sin, 2012, 38: 571–577 (in Chinese with English abstract)

[13]武小菲, 李洪杰, 王晓鸣, 陈怀谷, 徐世昌, 刘太国. 28份人工合成小麦对禾谷孢囊线虫、纹枯病、条锈病和叶锈病的抗性. 植物遗传资源学报, 2013, 14: 1221–1226

Wu X F, Li H J, Wang X M, Chen H G, Xu S C, Liu T G. Reactions of synthetic wheat to cereal cyst nematode, sharp eyespot, stripe rust, and leaf rust. J Plant Genet Resour, 2013, 14: 1221–1226 (in Chinese with English abstract)

[14]张佳佳, 袁虹霞, 张瑞奇, 邢小萍, 代君丽, 牛吉山, 李洪连, 陈佩度. 普通小麦–簇毛麦种质对菲利普孢囊线虫的抗性分析. 作物学报, 2012, 38: 1969–1976

Zhang J J, Yuan H X, Zhang R Q, Xing X P, Dai J L, Niu J S, Li H L, Chen P D. Analysis of resistance to Heterodera filipjevi in Triticum aestivum-Dasypyrum villosum germplasm. Acta Agron Sin, 2012, 38: 1969–1976 (in Chinese with English abstract)

[15]Allan R E, Peterson Jr C J, Rubenthaler G L, Line R F, Roberts D E. Registration of Madsen wheat (Reg. No.746). Crop Sci, 1989, 29: 1575–1576

[16]Helguera M, Khan I A, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci, 2003, 43: 1839–1847

[17]Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787–796

[18]Maia N. Obtention de bles tenders resistants au pietin-verse par croisements interspecifiques bles × Aegilops. CR Acad Agric (Fr.), 1967, 53: 149–154 (in French with English abstract)

[19]Yuan H X, Sun J W, Yang W X, Xing X P, Wang Z Y, Riley I T, Li H L. New pathotypes of Heterodera avenae (cereal cyst nematode) from winter wheat in Zhengzhou, Henan, China. Australas Plant Pathol, 2010, 39: 107–111

[20]Li H L, Yuan H X, Sun J W, Fu B, Nian G L, Hou X S, Xing X P, Sun B J. First record of the cereal cyst nematode Heterodera filipjevi in China. Plant Dis, 2010, 94: 1505

[21]Nicol J M, Ogbonnaya F, Singh A K, Bishnoi S P, Kanwar R S, Li H L, Chen S L, Peng D L, Bolat N, ?ahin E, Elekcio?lu? H. Current global knowledge of the usability of cereal cyst nematode resistant bread wheat germplasm through international germplasm exchange and evaluation. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 149–153

[22]李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954

Li H J, Wang X M, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract)

[23]Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, Lagudah E S. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Mol Plant-   Microbe Interact, 2000, 13: 334–341

[24]Seah S, Bariana H, Jahier J, Sivasithamparam K, Lagudah E S. The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence. Theor Appl Genet, 2001, 102: 600–605

[25]Fang T L, Campbell K G, Liu Z Y, Chen X M, Wan A M, Li S, Liu Z J, Cao S H, Chen Y H, Bowden R L, Carver B F, Yan L L. Stripe rust resistance in the wheat cultivar Jagger is due to Yr17 and a novel resistance gene. Crop Sci, 2011, 51: 2455–2465

[26]van Berloo R. GGT 2.0: Versatile software for visualization and analysis of genetic data. J Hered, 2008, 99: 232–236

[27]Bekal S, Jahier J, Rivoal R. Host responses of Triticeae to species of the cereal cyst nematode complex in relation to breeding resistant durum wheat. Fundam Appl Nematol, 1998, 21: 359–370

[28]Bariana H S, McIntosh R A. Characterisation and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica, 1994, 76: 53–61

[29]Jahier J, Abelard P, Tanguy M, Dedryver F, Rivoal R, Khatkar S, Bariana H S, Koebner R. The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5. Plant Breed, 2001, 120: 125–128

[30]McIntosh R A, Wellings C R, Park R F. Wheat Rusts, an Atlas of Resistance Genes. CSIRO, Melbourne, Australia, 1995.

[31]Takeuchi T, Munekata S, Suzuki T, Senda K, Horita H, Araki K, Asayama S, Sato M. Breeding wheat lines resistant to wheat yellow mosaic virus and localization of the resistance gene (YmMD) derived from wheat cultivar 'Madsen'. Breed Res, 2010, 12: 1–8

[32]Williamson V M, Thomas V, Ferris H, Dubcovsky J. An Aegilops ventricosa translocation confers resistance against root-knot nematodes to common wheat. Crop Sci, 2013, 53: 1412–1418

[33]Dyck P L, Lukow O M. The genetic analysis of two interspecific sources of leaf rust resistance and their effect on the quality of common wheat. Can J Plant Sci, 1988, 68: 633–639

[34]Cane K, Sharp P J, Eagles H A, Eastwood R F, Hollamby G J, Kuchel H, Lu M Q, Martin P J. The effects on grain quality traits of a grain serpin protein and the VPM1 segment in southern Australian wheat breeding. Aust J Agric Res, 2008, 59: 883–890

[35]Robert O, Abelard C, Dedryver F. Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed, 1999, 5: 167–175

[36]Ambrozková M, Dedryver F, Dumalasová V, Hanzalová A, Bartoš P. Determination of the cluster of wheat rust resistance genes Yr17, Lr37 and Sr38 by a molecular marker. Plant Prot Sci, 2002, 38: 41–45

[37]Hanzalová, A, Sumíková T, Bartoš P. Determination of leaf rust resistance genes Lr10, Lr26 and Lr37 by molecular markers in wheat cultivars registered in the Czech Republic. Czech J Genet Plant Breed, 2009, 45: 79–84

[38]李峰奇, 韩德俊, 魏国荣, 曾庆东, 康振生. 黄淮麦区小麦品种Lr37-Yr17-Sr38基因簇的分子检测. 西北农林科技大学学报(自然科学版), 2009, 37(3): 151–158

Li F Q, Han D J, Wei G R, Zeng Q D, Kang Z S. Identification of Lr37-Yr17-Sr38 in wheat cultivars of Huanghuai wheat region using molecular markers. J Northwest A&F Univ (Nat Sci Edn), 2009, 37(3): 151–158 (in Chinese with English abstract)

[39]Robert O, Dedryver F, Leconte M, Rolland B, de Vallavieille-Pope C. Combination of resistance tests and mo-lecular tests and molecular tests to postulate the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breed, 2000, 119: 467–472

[40]Wurschum T, Langer S M, Longin C F H, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet, 2013, 126: 1477–1486

[41]Cavanagh C R, Chao S, Wang S, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057–8062

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[7] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[8] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[9] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[10] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[11] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[12] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[13] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[14] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[15] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!