Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (10): 1510-1518.doi: 10.3724/SP.J.1006.2015.01510
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
QIN Wei-Wei,LI Yong-Xiang,LI Chun-Hui,CHEN Lin,WU Xun,BAI Na,SHI Yun-Su,SONG Yan-Chun,ZHANG Deng-Feng,WANG Tian-Yu*,LI Yu*
[1]Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8(6): e66428[2]Sundaresan V. Control of seed size in plants. Proc Natl Acad Sci USA, 2005, 12: 17887–17888[3]Yang X, Ma H, Zhang P, Yan J, Guo Y, Song T, Li J. Characterization of QTL for oil content in maize kernel. Theor Appl Genet, 2012, 125: 1169-1179[4]Ribaut J M, Jiang C, Gonzalez D, Edmeades G O, Hoisington D A. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker assisted selection strategies. Theor Appl Genet, 1997, 94: 887–896[5]Wen Y X, Zhu J. Multivariable conditional analysis for complex trait and its components. Acta Genet Sin, 2005, 32: 289–296[6]Borras L, Otegui M E. Maize kernel weight response to post flowering source-sink ratio. Crop Sci, 2001, 41: 1816–1822[7]Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127: 1309–1321[8]李永祥, 王阳, 石云素, 宋燕春, 王天宇, 黎裕. 玉米籽粒构型与产量性状的关系及QTL作图. 中国农业科学, 2009, 42: 408–418 Li Y X, Wang Y, Shi Y S, Song Y C, Wang T Y, Li Y. Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin, 2009, 42: 408–418(in Chinese with English abstract)[9]Peng B, Li Y X, Wang Y, Liu C, Liu Z Z, Tan W W, Zhang Y, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. QTL analysis for yield components and kernel related traits in maize across multi-environments. Theor Appl Genet, 2011, 122: 1305–1320[10]黎裕, 王天宇, 石云素, 宋燕春. 基因组学方法在玉米种质资源研究中的应用. 植物遗传资源学报, 2003, 4: 256–260 Li Y, Wang T Y, Shi Y S, Song Y C. Applications of genomics approaches in studies on maize germplasm. J Plant Genet Resour, 2003, 4: 256–260 (in Chinese with English abstract)[11]Liu Y, Wang L W, Sun C L, Zhang Z X, Zheng Y L, Qiu F Z. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet, 2014, 127: 1019–1037[12]Zhang Z H, Liu Z H, Hu Y M, Li W H, Fu Z Y, Ding D, Li H C, Qiao M M, Tang J H. QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS One, 2014, 9(2): e89645[13]Nikolic A, Andelkovic V, Dodig D, Drinic M S, Kravic N, Micic I D. Identification of QTLs for drought tolerance in maize: II. Yield and yield components. Genetica, 2013, 45: 341–350[14]Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O, Mangini G, Signorile A, Simeone R, Blanco A. Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol Breed, 2014, 34: 1563–1578[15]Guo T T, Yang N, Tong H, Pan Q C, Yang X H, Tang J H, Wang J K, Li J S, Yan J B. Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet, 2014, 127: 2149–2158[16]Zou G H, Zhai G W, Feng Q, Yan S, Wang A H, Zhao Q, Shao J F, Zhang Z P, Zou J Q, Han B, Tao Y Z. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot, 2012, 63: 5451–5462[17]Chen D H, Ronald P. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999, 17: 53–57[18]Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6(5): e19379[19]Li C H, Li Y X, Shi Y S, Song Y C, Zhang D F, Buckler E S, Zhang Z W, Wang T Y, Li Y. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One, 2015, 10(3): e0121624[20]Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112: 1258–1270[21]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104[22]Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374[23]Gupta P K, Rustgi S, Kumar N. Genetic and molecular basis of grain size and its relevance to grain productivity in higher plants. Genome, 2006, 49: 565–571[24]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol A B, Saranga Y. Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant Cell Environ, 2009, 32: 758–779[25]Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTL regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941-963[26]Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y, Wang D, Shi Y S, Song Y C, Wang T Y, Li Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193: 303–316[27]Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet, 1996, 92: 817–826[28]张向歌, 王彬, 袁亮, 张晓祥, 时夏, 赵晓锋, 汤继华. 基于单片段代换系玉米子粒性状的QTL定位. 玉米科学, 2013, 21(6): 35–40Zhang X G, Wang B, Yuan L, Zhang X X, Shi X, Zhao X F, Tang J H. QTL mapping for kernel related traits basing on the single segment substitution lines in maize. J Maize Sci, 2013, 21(6): 35–40 (in Chinese with English abstract)[29]张伟强, 库丽霞, 张君, 韩赞平, 陈彦惠. 玉米出籽率、籽粒深度和百粒重的QTL分析. 作物学报, 2013, 39: 455–463Zhang W Q, Ku L X, Zhang J, Han Z P, Chen Y H. QTL analysis of kernel ratio, kernel depth, and 100-kernel weight in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 455–463(in Chinese with English abstract)
|
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[5] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[6] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[7] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[8] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[9] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[10] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[11] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[12] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[13] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[14] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[15] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
|