Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (10): 1519-1528.doi: 10.3724/SP.J.1006.2015.01519

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterization and Gene Mapping of a Spotted-leaf Mutant spl21 in Rice (Oryza sativa L.)

SONG Li-Xin1,2,HUANG Qi-Na1,FENG Bao-Hua1,SHI Yong-Feng1,ZHANG Xiao-Bo1,XU Xia1,WANG Hui-Mei1,LI Xiao-Hong1,ZHAO Bao-Hua2,*,WU Jian-Li1,*   

  1. 1 State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement / China National Rice Research Institute, Hangzhou 310006, China; 2 College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
  • Received:2015-03-12 Revised:2015-06-01 Online:2015-10-12 Published:2015-06-03
  • Contact: 赵宝华, E-mail: zhaobaohua86178@sohu.com; 吴建利, E-mail: beishangd@163.com

Abstract:

The rice spotted-leaf 21 mutant (spl21) was isolated from a diepoxybutane-induced IR64 mutant bank. Under field conditions, the red-brown spots appeared on the leaves of mutant seedlings in two weeks after sowing. Subsequently, a portion of spots merged and the leaf tips became yellowish, wilted and spread downwards along both edges of the leaf blade leading to the death of the whole leaf blade when the symptom was severe. Accumulation of H2O2 was detected in and around the spots. Major agronomic traits including plant height, length of panicle, number of panicles, number of filled grains, seed setting-rate and 1000-grain weight were markedly affected in the mutant. The contents of chlorophyll a, b, carotenoid and photosynthetic parameters were significantly reduced in the mutant as compared with the wild type. Furthermore, the activities of CAT, SOD, APX and soluble protein contents were significantly lower than those of the wild type while the activity of POD was apparently higher than that of the wild type. The mutant trait was controlled by a single recessive nuclear gene, tentatively termed spl21(t), located on the long arm of chromosome 12. The population and data achieved in the present study would facilitate the isolation and functional analysis of spl21(t).

Key words: Rice, Spotted-leaf mutant, Hydrogen peroxide, Photosynthetic pigment, Gene mapping

[1]黄奇娜, 杨杨, 施勇烽, 陈洁, 吴建利. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24: 108–115



Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Recent advances in research on spotted leaf mutants of rice (Oryza sativa). Chin J Rice Sci, 2010, 24: 108–115 (in Chinese with English abstract)



[2]Huang Q N, Shi Y F, Yang Y, Feng B H, Wei Y L, Chen J, Marietta B, Leung H, Wu J L. Characterization and genetic analysis of a light and temperature-sensitive spotted-leaf mutant in rice. J Integr Plant Biol, 2011, 53: 671–681



[3]Feng B H, Yang Y, Shi Y F, Shen H C, Wang H M, Huang Q N, Xu X, Lv X G, Wu J L. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Plant Biol, 2013, 55: 473–483



[4]Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L. A novel zinc finger protein is encoded by the arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685–694



[5]Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the LIS1 gene of maize. Cell, 1997, 89: 25–31



[6]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Daelen R, Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze L P. The barley mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705



[7]Badigannavar A M, Kale D M, Eapen S, Murty G S. Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002, 93: 50–52



[8]陈析丰, 金杨, 马伯军. 水稻类病变突变体及抗病性的研究进展. 植物病理学报, 2011, 41: 1–9



Chen X F, Jin Y, Ma B J. Progress on the studies of rice lesion mimics and their resistant mechanism to the pathogens. Acta Phytopathol Sin, 2011, 41: 1–9 (in Chinese with English abstract)



[9]邱结华, 马宁, 蒋汉伟, 圣忠华, 邵高能, 唐绍清, 魏祥进, 胡培松. 水稻类病斑突变体lmm4的鉴定及其基因定位. 中国水稻科学, 2014, 28: 367–376



Qiu J H, Ma N, Jiang H W, Sheng Z H, Shao G N, Tang S Q, Wei X J, Hu P S. Identification and gene mapping of a lesion mimic mutant lmm4 in rice. Chin J Rice Sci, 2014, 28: 367–376 (in Chinese with English abstract)



[10]Li Z, Zhang Y X, Liu L, Liu Q, Bi Z B, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300–307



[11]Xu X, Zhang L L, Liu B M, Ye F Y, Wu Y J. Characterization and mapping of a spotted leaf mutant in rice (Oryza sativa). Genet Mol Biol, 2014, 37: 406–413



[12]刘林, 张迎信, 李枝, 刘群恩, 余宁, 孙滨,杨正福, 周全, 程式华, 曹立勇. 水稻类病变突变体g303的鉴定和基因定位. 中国水稻科学, 2014, 28: 465–472



Liu L, Zhang Y X, Liu Q N, Yu N, Sun B, Yang Z F, Zhou Q, Cheng S H, Cao L Y. Characterization and gene mapping of a lesion mimic mutant g303 in rice. Chin J Rice Sci, 2014, 28: 465–472 (in Chinese with English abstract)



[13]韩雪颖, 杨勇, 余初浪, 张文浩, 叶胜海, 陈斌, 程晨, 程晔, 严成其, 陈剑平. 一个抗病性增强的水稻类病变突变体的蛋白质组学研究. 中国水稻科学, 2014, 28: 559–569



Han X Y, Yang Y, Yu C L, Zhang W H, Ye S H, Chen B, Cheng C, Cheng H, Yan C Q, Chen J P. A proteomic study on a disease-resistance-enhanced rice lesion mimic mutant. Chin J Rice Sci, 2014, 28: 559–569 (in Chinese with English abstract)



[14]Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535



[15]Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795–2808



[16]Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860



[17]Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit l1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274



[18]Wang L Y, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384



[19] Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J E, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009: 431–439



[20]Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y L, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NHI is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313–324



[21]Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice pti1a negatively regulates RAR1-dependent defense responses. Plant Cell, 2007, 19: 2940–2951



[22]Sun C H, Liu L C, Tang J Y,  Lin A, Zhang F T, Fang J, Zhang G F, Chu C C. Rlin1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29–37



[23]Tang J Y, Zhu X D , Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J, 2011, 66: 996–1007



[24]Liu X Q, Li F, Tang J Y, Wang W H, Zhang F X, Wang G D, Chu J F, Yan C Y, Wang T Q, Chu C C, Li C Y. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. Plos One, 2012, 7: 1–14



[25]Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putativesplicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939–949



[26]Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L). Genes Genet Syst, 2012, 87: 169–179



[27]Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake G J, Chu C. Nitric oxide and protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol, 2012, 158: 451–464



[28]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133



[29]Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313



[30]Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domainsis involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217



[31]Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan J R, Undan J, Terauchi R. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2014 Nov 4, 10, 1007/s00438-014–0944-z



[32]Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365–379



[33]Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105



[34]Brodersen P, Malinovsky F G, Hematy K, Newman M A, Mundy J. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol, 2005, 138: 1037–1045



[35]Wu C J, Bordeos A, Madamba M S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 276: 605–619



[36]Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15



[37]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994, 144: 307–313



[38]Thordal-Christansen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187–1194



[39]赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002. pp 134–143



Zhao S J, Shi G A, Dong X C. Plant Physiology Experiment Instruction. Beijing: China Agricultural Science and Technology Press, 2002. pp 134–143 (in Chinese)



[40]卢扬江, 郑康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992, 6(1): 47–48



Lu Y J, Zheng K L. A simple method for isolation of rice mitochondrial DNA. Chin J Rice Sci, 1992, 6(1): 47–48 (in Chinese with English abstract)



[41]李梦钗, 冯薇, 葛艳蕊. 臭氧处理对草莓果实PPO和POD活性的影响. 经济林研究, 2012, 30(3): 84–86



Li M C, Feng W, Ge Y R. Effects of ozone treatment on PPO and POD activities in strawberry fruit. Nonwood For Res, 2012, 30(3): 84–86 (in Chinese with English abstract)



[42]李秀兰, 王平荣, 曲志才, 孙小秋, 王兵, 邓晓建. 水稻类病变突变体C23的遗传分析与基因的精细定位. 中国农业科学, 2010, 43(18): 3691–3697



Li X L, Wang P R, Qu Z C, Sun X Q, Wang B, Deng X J. Genetic analysis and fine mapping of a lesion mimic mutant C23 in rice. Sci Agric Sin, 2010, 43(18): 3691–3697 (in Chinese with English abstract)



[43]杨绍华, 刘华清, 王锋. 水稻斑点叶突变体W1764的遗传分析及初步定位. 福建农业学报, 2011, 26: 519–522



Yang S H, Liu H Q, Wang F. Genetic analysis and gene mapping of a spotted leaf mutant W1764 in rice. Fujian J Agric Sci, 2011, 26: 519–522 (in Chinese with English abstract)



[44]吴超, 付亚萍, 胡国成, 斯华敏, 刘旭日, 孙宗修, 程式华, 刘文真. 一个水稻类病变黄叶突变体的鉴定和精细定位. 中国水稻科学, 2011, 25: 256–260



Wu C, Fu Y P, Hu G C, Si H M, Liu X R, Sun Z X, Cheng S H, Liu W Z. Identification and fine mapping of a spotted and yellow leaf mutant in rice. Chin J Rice Sci, 2011, 25: 256–260 (in Chinese with English abstract)



[45]陈萍萍, 叶胜海, 赵宁春, 陆艳婷, 刘合芹, 杨玲, 金庆生, 张小明. 浙粳22类病斑突变体spl(t)特征及其基因定位. 核农学报, 2010, 24: 1–6



Chen P P, Ye S H, Zhao N C,  Lu Y T , Liu H Q, Yang L, Jin Q S, Zhang X M. Characteristics and genetic mapping of a lesion mimic mutant spl(t) in Japonica rice variety Zhejing 22. J Nucl Agric Sci, 2010, 24: 1–6 (in Chinese with English abstract)



[46]代高猛, 朱小燕, 李云峰, 凌英华, 赵芳明, 杨正林, 何光华. 水稻类病斑突变体spl31的遗传分析与基因定位. 作物学报, 2013, 39: 1223–1230



Dai G M, Zhu X Y, Li Y F, Ling Y H, Zhao F M, Yang Z L, He G H. Genetic analysis and fine mapping of a lesion mimic mutant spl31 in rice. Acta Agron Sin, 2013, 39: 1223–1230 (in Chinese with English abstract)



[47]龙继凤, 潘英华, 秦学毅, 罗兴录, 朱汝财. 水稻类病变坏死突变体的形态观察及基因初步分析. 广西农业科学, 2009, 40: 614–617



Long J F, Pan Y H, Qin X Y, Luo X L, Zhu R C. Morphological observation and gene analysis of lesion mimic mutant of rice (Oryza sativa L.). Guangxi Agric Sci, 2009, 40: 614–617 (in Chinese with English abstract)

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!