Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (09): 1342-1351.doi: 10.3724/SP.J.1006.2016.01342


Cloning, Expression, and Functional Analysis of Transcription Factor GeneGbMYB60 in Cotton

GAO Wei**,LIU Hui-Li**,TIAN Xin-Quan,ZHANG Hui,SONG Jie,YANG Yong,LONG Lu,SONG Chun-Peng*   

  1. School of Life Science, Henan University / State Key Laboratory of Cotton Biology / Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan 475004, China
  • Received:2016-01-29 Revised:2016-06-20 Online:2016-09-12 Published:2016-06-27
  • Contact: 宋纯鹏, E-mail: songcp@henu.edu.cn, Tel: 0371-23880002 E-mail:gaowei021@163.com
  • Supported by:

    This work was supported by the National Key Basic Special Funds (2012CB1143001), State Key Laboratory of Cotton Biology Open Fund (CB2015A31), and Henan Provincial Educational Department Foundation of China (15A180028, 15A180029).


MYB transcription factors are conserved proteins in all eukaryotic cell, which play important roles in plant growth, development, metabolism, abiotic and biotic stress resistance, as well as phytohormone-mediated signal transduction. In this research, a MYB gene was isolated from the sea-island cotton cultivar Hai 7124. This gene was named GbMYB60 based on the sequence similarity search and phylogenetic analysis. The full-length of GbMYB60coding sequenceis 990 bp, and GbMYB60 encodes a 36.9 kD R2R3-type MYB protein, which is specifically located in nucleus of plant cell. GbMYB60 was preferentially expressed in leaf and induced by abiotic stresses (such as salt, mannitol, cold, and heat) and phytohormones (abscisic acid, ethephon, methyl jasmonate and salicylic acid) treatments, but the general expression of GbMYB60 was low in all tissues. Salt and mannitol tolerances were analyzed in control and GbMYB60 silenced-cotton generated by virus-induced gene silencing system, and the results showed that GbMYB60 positively regulated cotton tolerance to salt but not to mannitol.

Key words: Cotton, MYB transcription factor, Salt, Mannitol, Abiotic stress

[1] Ambawat S, Sharma P, Yadav N R, Yadav R C. MYB transcription factor genes as regulators for plant responses: an overview. Plant Mol Biol, 2013, 19: 307–321
[2] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573–581
[3] Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci, 2015, 16: 15811–15851
[4] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78
[5] Guo Y F, Gan S S. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol, 2011, 156: 1612–1619
[6] Oh J E, Kwon Y, Kim J H, Noh H, Hong S W, Lee H. A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol, 2011, 77: 91–103
[7] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138–1152
[8] Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196–1200
[9] Seo P J, Park C M. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New phyto, 2010, 186: 471–483
[10] Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou D X, Yang W, Zhao Y.The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice.Plant Sci, 2015, 236: 146–156
[11] Vélez-Bermúdez I C, Salazar-Henao J E, Fornalé S, López-Vidriero I, Franco-Zorrilla J M, Grotewold E, Gray J, Solano R, Schmidt W, Pagés M, Riera M, Caparros-Ruiz D. A MYB/ZML complex regulates wound-induced lignin genes in maize. Plant Cell, 2015, 27: 3245–3259
[12] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537
[13] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524–530
[14] Pu L, Li Q, Fan X P, Yang W C, Xue Y B. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics, 2008, 180: 811–820
[15] Suo J F, Liang X O, Pu L, Zhang Y S, Xue Y B. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium Hirsutum L.). Bba-Gene Struct Expr, 2003, 1630: 25–34
[16] Walford S A, Wu Y, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development. Plant J, 2011, 65: 785–797
[17] Machado A, Wu Y, Yang Y, Llewellyn D J, Dennis E S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J, 2009, 59: 52–62
[18] Li Y, Jiang J, Du M L, Li L, Wang X L, Li X B. A cotton gene encoding MYB-like transcription factor is specifically expressed in pollen and is involved in regulation of late anther/pollen development. Plant Cell Physiol, 2013, 54: 893–906
[19] Chen T Z, Li W J, Hu X H, Guo J R, Liu A M, Zhang B L. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol, 2015, 56: 917–929
[20] Jin S X, Zhang X L, Liang S G, Nie Y L, Guo X P, Huang C. Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens.Plant Cell Tiss Organ Cult, 2005, 81: 229–237
[21] Gao X Q, Wheeler T, Li Z H, Kenerley C M, He P, Shan L B. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011, 66: 293–305
[22] Gao W, Long L, Zhu L F, Xu L, Gao W H, Sun L Q, Liu L L, Zhang X L. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12: 3690–3703
[23] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101–1108
[24] Long L, Gao W, Xu L, Liu M, Luo X Y, He X, Yang X Y, Zhang X L, Zhu L F. GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell Tiss Organ Cult, 2014, 116: 153–162
[25] Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Mol Plant, 2015, 8: 378–388
[26] Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci, 2014, 5: 151
[27] Liu J G, Li Y, Wang W, Gai J Y, Li Y. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean, BMC Genomics, 2016, 17: 223
[28] Park J S, Kim J B, Cho K J, Cheon C I, Sung M K, Choung M G, Roh K H. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa). Plant Cell Rep, 2008, 27: 985–994
[29] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796–815
[30] Beckers G J, Jaskiewicz M, Liu Y, Underwood W R, He S Y, Zhang S, Conrath U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 2009, 21: 944–953

[1] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[5] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[6] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[7] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[8] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[9] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[10] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[11] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[12] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[13] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[14] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[15] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
Full text



No Suggested Reading articles found!